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Abstract
This paper deals with robust speaker verification (SV) in far-
field sensing. The robustness is verified on a subset of NIST
SRE 2010 corpus retransmitted in multiple real rooms of dif-
ferent acoustics and captured with multiple microphones. We
experimented with various data preprocessing steps including
different approaches to dereverberation and beamforming ap-
plied to ad-hoc microphone arrays. We found that significant
improvements in accuracy can be achieved with neural net-
work based generalized eigenvalue beamformer preceded by
weighted prediction error dereverberation. We also explored
the effect of data augmentation by adding various real or sim-
ulated room acoustic properties to the Probabilistic Linear Dis-
criminant Analysis (PLDA) training dataset. As a result, we
developed a speaker recognition system whose performance
is stable across different room acoustic conditions. It yields
41.4% relative improvement in performance over the system
without multi-channel processing tested on the cleanest micro-
phone data. With the best combination of data preprocessing
and augmentation, we obtained a performance close to the one
we achieved with the original clean test data.
Index Terms: speaker verification, beamforming, dereverbera-
tion, autoencoder

1. Introduction
Robustness of speaker verification (SV) systems is a crucial
property especially when they are used in real conditions. Even
though the reliability of recognition while recording with far-
field microphones still remains challenging, a limited number
of works have been published [1, 2]. When remote microphones
are employed to capture speech signals, they inevitably record
attenuated copies of the original signal that are present in en-
closures as a result of the multipath propagation of a source
signal. In other words, the channel between source and receiver
corresponds to a system described by room impulse response
(RIR). Therefore, the channel differs for every position even in
the same room. RIR is usually much longer than the analysis
window which prevents methods like cepstral mean and vari-
ance normalization (CMVN) applied to features from dealing
well with late reverberation [1].

Restoration of a source signal is an objective of the first type
of approaches that cope with effects of room acoustics. Various
speech enhancement methods were developed [3] over years. In
this work, we will focus on two dereverberation techniques dif-
fering in their nature. The first one is weighted prediction error
(WPE) based on delayed linear prediction [4, 5]. It is capable
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of processing both single- and multi-channel data. The denois-
ing/dereverberation autoencoder [6] will be the second method
of our interest.

Since our dataset consists of multichannel recordings from
irregularly shaped microphone arrays, beamforming techniques
may be used. Microphone arrays are spatial filters capable of
enhancing the desired signal and suppressing interfering sounds
at the same time, which makes them also means for dereverber-
ation. Usually, microphones in arrays are positioned in a reg-
ular topology. However, ad hoc microphone arrays, where no
prior information about microphone positions is available, are
more realistic. They must work blindly to locate the direction
of interest. Various approaches were developed to tackle this
problem [7]. We will use estimation based on generalized cross-
correlation with phase transform (GCC-PHAT) in combination
with a basic delay-and-sum (DS) beamformer. Recently, usage
of neural networks in acoustic beamforming emerged [8, 9]. We
will make use of the neural generalized eigenvalue beamformer
by Heymann et al. [9].

The second approach focuses on a backend. In our SV sys-
tem, Probabilistic Linear Discriminant Analysis (PLDA) is used
as the backend and in order to adapt it to a new channel, intro-
duced by either room conditions or preprocessing, we designed
multiple training datasets to capture these channel effects and
compared their impact on system adaptation.

This work is a continuation of our initial experiments
in [10] where we analyzed aforementioned methods on limited
amount of data. In this work, we focus on system robustness
and consistency across multiple environments as we perform
tests on data obtained from three different rooms. On top of the
analysis presented in [10], we made use of multichannel real
and simulated data also in the PLDA training further improving
the adaptation to the test scenario. We also examined the corre-
lation of the SV system accuracy with D50 acoustic parameter
and explored a possible scenario for SV when we select the best
possible single channel and avoid the multi-channel processing.

2. Speaker recognition system
We used a standard speaker verification system based on Mel-
frequency cepstral coefficients (MFCCs) and i-vectors [11]. 19
MFCC coefficients were extracted along with log-energy from
25 ms windows with 15 ms overlaps. MFCCs were augmented
with their ∆ and ∆∆ coefficients providing 60-dimensional
feature vectors that were further subjected to the cepstral mean
and variance normalization (CMVN) with 3-second sliding
window. A gender-independent 2048 component GMM-UBM
was trained on a subset of PRISM dataset [12] which consists
of 15600 telephone and microphone files including both female
(1174) and male (813) speakers. I-vector extractor was trained
on 86629 telephone and microphone files from PRISM set in-
cluding 9663 female and 7013 male speakers. Dimensionality
of i-vectors was set to 600 and the i-vectors were later pro-
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jected to 200-dimensional space by means of Linear Discrim-
inant Analysis (LDA). PLDA classifier was trained on the same
dataset as the i-vector extractor.

3. Experimental setup
Since this work aims at exploration of speaker verification in
far-field scenarios, the subset of data released for NIST Year
2010 Speaker Recognition evaluations (SRE) was retransmitted
in real rooms. The retransmitted dataset consists of 459 three or
five minutes long recordings spanning 150 female voices. 302
utterances were originally recorded with microphones and 157
over the telephone channel.

During the retransmission, recordings were simultaneously
captured by 8 or 6 microphones placed in various locations of
a room. We consider these microphones as an ad hoc micro-
phone array without any particular shape. The retransmission
was performed in three different rooms with reverberation times
(T30) 0.75 s, 0.53 s and 0.65 s. A placement of loudspeaker and
microphones varied across rooms.

3.1. Denoising/dereverberation autoencoder and WPE

The DNN autoencoder used for dereverberation maps frames of
a log-magnitude spectrum to their dereverberated counterparts.
The exact description of the architecture is given in [6]. In this
text, the network will be referred to as DNS.

In order to perform weighted prediction error (WPE), we
divided audio signals into frames of 32 ms by shifting the Hann
window by 8 ms. The number of filter coefficients was set to
15.

3.2. Beamforming techniques

In order to perform beamforming, we made use of two different
methods. The first one is a basic delay-and-sum (DS) beam-
former [13], the second one is a generalized eigenvalue (GEV)
beamformer [14] which uses a neural network (NN) to predict
masks applied to spectra when computing power spectral den-
sity matrices (PSD) [9].

For the delay-and-sum processing, the input signal is di-
vided into 500 ms overlapping segments multiplied by Hann
window. The time difference of arrival (TDOA) is determined
for every frame by a position of the maximum of a generalized
cross-correlation with phase transform (GCC-PHAT) output.

For the GEV beamformer mask estimation, we used a feed-
forward NN whose architecture is defined in [9]. We explored
two training schemes. In both of them, we used 7138 record-
ings of the simulated training data defined by the 3rd CHiME
challenge [15]. In the first scheme, the data were prepared1 ac-
cording to [9]. The beamformer using this NN will be referred
to as FW GEV. The processing was designed mainly to tackle
noise. We prepared also another dataset aimed more at rever-
beration. It was obtained by convolving the original training
recordings with parts of random room impulse responses (RIR).
Following [16], the result of convolution with the first 50 ms of
RIR was considered to be a clean audio. Convolution with the
rest resulted in a signal used for “noise” mask computation. The
beamformer will be denoted as FW GEV rever.

3.3. PLDA training data augmentation

In our previous experiments [17], we observed that in order to
adapt SV system, the PLDA is a key part to focus on. Therefore,

1https://github.com/fgnt/nn-gev

we re-trained it on different datasets of specific properties. In
order to focus on a channel variability, all datasets contain the
same set of 16676 speakers.

orig The original dataset described in section 2. We consider
the resulting system to be our baseline.

simu Dataset designed to be closer to the test data in terms
of an acoustic channel. It contains the same recordings
(86629) as the orig dataset. However, all of them were
convolved with simulated room impulse responses. We
used the image method [18, 19] to obtain RIRs. Room
dimensions were chosen randomly for every recording.
Minimum room size was set to 2.0× 4.0× 2.3 m, max-
imum to 10.0 × 12.0 × 5.0 m. The placement of the
source and the receiver was random as well.

orig + multich We selected data from previous NIST SREs
(2005, 2006, 2008, 2010) that were simultaneously
recorded over multiple (4 to 14) microphones. In to-
tal, we selected 3490 utterances from 448 speakers al-
ready present in the orig dataset. The recordings were
processed exactly the same way as the test data (see sec-
tion 4). Resulting single-channel recordings were then
combined with the orig ones. Overall, this set contains
90119 recordings.

simu + multich This dataset is almost the same as orig + mul-
tich. The only difference is that the simu data are used
instead of orig.

derever adapt The base for derever adapt is orig + simu.
The simulated part was further processed by appropriate
dereverberation method.

4. Results
Results of our experiments are listed in Table 1 in terms of
equal error rate (EER) computed on pooled scores from all three
rooms. The columns correspond to systems (training datasets).
The table is further divided into row sections according to the
test data preprocessing. Data (clean) for our baseline system are
later used for retransmission. The baseline EER of 2.71% was
obtained by evaluation of the clean test data with the orig sys-
tem. The aim is to approach such accuracy on reverberant data.
We did not apply any test data preprocessing for systems in the
rows denoted as reverberant. In those rows, a substantial deteri-
oration of accuracy can be seen. For convenience, only the best
and the worst performing single microphones are shown.

4.1. Reverberant test data and dereverberation

It was shown that the definition (D50) acoustic parameter [20]
closely correlates with speaker recognition performance [21].
In Figure 1, the EER values are displayed as a function of D50
for all microphones in all rooms. The baseline SV system was
used to obtain EERs. It can be seen that the performances vary
substantially across rooms and the correlation with D50 approx-
imately holds. Knowing the D50 values beforehand can be ben-
eficial for selection of the best microphone and use of a sim-
ple single-channel speaker verification. The accuracy obtained
with the microphones picked according to the best and the worst
(the highest and the lowest) D50 values are shown in brackets
in the row with results on reverberant data in Table 1 (section
basic). The EERs chosen by taking global minimum and maxi-
mum over all microphones are also in the table (values without
brackets, section basic). They confirm that the choice according
to D50 is reasonable.
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Figure 1: Distribution of EERs with respect to the D50 values
corresponding to individual microphones in tested rooms.

In the dereverb section, it can be seen that when testing on
dereverberated data from the best microphone, an improvement
is achieved. When using WPE, the difference in EER is greater.
It again holds that the best performing microphone (according
to accuracy) corresponds to that selected by the D50 value. In
the case of WPE, the best resulting accuracy (2.62% EER) was
even better than for the original test data (2.71% EER). It is,
however, worth mentioning that the knowledge of D50 values
is idealistic. They depend on positions of both speaker and mi-
crophone since they are computed from RIRs. Therefore, the
placement must be known before testing. Moreover, the acous-
tic conditions of the target room may not be known at all. Re-
garding the worst performing microphones, they do not need to
correlate with the lowest D50 as shown in the table. We ob-
served that for certain acoustic conditions, dereverberation may
even cause accuracy deterioration (WPE). Therefore, a different
microphone can become the worst. In our experiments, the NN
based dereverberation yielded more stable results.

4.2. Preprocessing with beamforming

We compare two approaches that are rather different in com-
plexity but may work blindly, requiring neither speaker nor mi-
crophone locations. The results obtained on beamformed test
data with differently adapted SV systems are shown in Figure 2
and in the beamf. section of Table 1.

Division of the systems into two clusters is visible. The
original system can be improved by augmenting the training
data by applying the same pre-processing that is applied to the
test data. However, it seems to be more important to provide
the PLDA with recordings convolved with RIRs during train-
ing. The possible explanation is that beamforming performs
a combination of linearly filtered reverberant data. The channel
of such data could be closer to the linearly filtered training data
(using RIRs) than the channel of the original data. Further im-
provement can be achieved by the introduction of beamformed
real multichannel data to reverberant dataset.

4.3. Combination of beamforming and dereverberation

In this part, we explore the effects of combinations of beam-
forming and dereverberation methods. According to our exper-
iments, the order in which the methods are applied is important.

Regarding the denoising/dereverberation autoencoder, we
observed that neural network processing should be preceded by
beamforming. In case the DS is applied after NN processing,
it fails on individually dereverberated signals that presumably
lost some phase information. Mask estimation in FW GEV also
performs poorly as it is trained on data from a different domain
and it should estimate which frequency bins are dominated by
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Figure 2: Performance of SV systems when beamforming is ap-
plied to the test data.
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Figure 3: Performance of SV systems when beamforming and
subsequent autoencoder based dereverberation is applied to the
test data.

noise/reverberation after denoising/dereverberation.
In Figure 3 and in the DNS + beamf. section of Table 1, it

can be seen that evaluating with the simu system is not sufficient
as it does not bring overall improvement. The acoustic channels
present in the orig and simu data seem to be different from that
introduced by non-linear NN processing. Indeed, introduction
of the training data processed by beamforming and subsequent
DNS brings improvements (dashed lines). Since orig + mul-
tichan works promisingly, we trained another system making
use of simulation to produce more training data that are subse-
quently dereverberated by DNS (derever adapt). Further aver-
age absolute improvement of 0.6% EER was then achieved.

We also experimented with WPE instead of DNS. In this
case, WPE should precede beamforming. Since WPE is able
to process multichannel signals and output again multichannel
signals, it is perfectly suitable for this scheme2.

The simu system yields by far the worst performance
among systems shown in Figure 4 (see also the WPE + beamf.
seciton of Table 1). It corresponds to the ability of WPE to dere-
verberate signals. In the previous experiments, we observed that
the addition of multichannel real data processed by means of
dereverberation in combination with beamforming to the train-
ing data can bring improvement in performance. When such
data, originating from real conditions, were added to simu, cre-
ating simu + multichan in this experiment, considerable im-
provement in EER was observed. However, the change was not
sufficient and the orig system still worked better. As expected,
the performance of the orig system augmented with multichan-
nel data processed consistently with the test data (orig + multi-
chan) improved over the orig system performance. While using

2We also observed that multichannel WPE is more efficient.
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Table 1: Results of the experiments in terms of EER [%]. Values in brackets were selected according the best/worst values of D50.

Test data orig simu orig + multich simu + multich derever adapt

ba
si

c clean 2.71 2.73 - - -

reverberant best 5.24 (5.24) 4.31 (4.59) - - -
worst 16.88 (16.88) 12.37 (12.37) - - -

de
re

ve
rb

. DNS best 3.90 (3.90) 4.30 (4.30) - - 3.64 (3.64)
worst 12.57 (10.17) 12.66 (10.82) - - 9.12 (7.97)

WPE best 2.73 (2.73) 3.67 (3.67) - - 2.62 (2.93)
worst 19.71 (9.12) 18.34 (8.60) - - 17.49 (8.48)

be
am

f. DS 7.94 6.32 7.66 6.01 -
FW GEV 5.84 5.07 5.49 4.75 -
FW GEV rever 5.98 4.89 5.49 4.82 -

D
N

S
+

be
am

f. DS + DNS 6.96 7.86 6.15 6.64 5.45
FW GEV + DNS 5.97 6.01 5.00 5.28 4.51
FW GEV rever + DNS 5.87 5.70 4.82 4.96 4.22

W
PE

+
be

am
f. WPE + DS 5.10 5.91 4.89 5.14 4.68

WPE + FW GEV 3.32 3.74 3.21 3.59 3.07
WPE + FW GEV rever 3.35 3.95 3.18 3.39 3.15

co
m

bi
ne

d WPE + DS + DNS 5.74 7.79 5.00 6.01 -
WPE + FW GEV + DNS 3.63 4.47 3.46 3.74 -
WPE + FW GEV rever + DNS 3.66 4.37 3.11 3.60 -

WPE + DS WPE + FW_GEV WPE + FW_GEV_rever
preprocessing technique
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Figure 4: Performance of SV systems when WPE dereverbera-
tion and subsequent beamforming is applied to the test data.

DNS denoising/dereverberation, derever adapt improved upon
orig + multich by substantial margin. However, when the WPE
is applied instead, the difference between those two systems is
almost negligible. It led to an important outcome of the experi-
ments: acquisition of sufficient amount of multichannel labeled
data is not straightforward (it was demonstrated by orig + mul-
tich). However, one can make use of simulated data (despite
their realism is limited by simplifications of the image method)
that can be easily generated in great amounts and obtain a sys-
tem with comparable performance to the one using real data.

4.4. Overall results

Intuitively, application of all preprocessing steps is an option as
well. According to the ordering of methods determined in sec-
tion 4.3, we first applied WPE, then beamforming and finally
DNS. However, it can be seen in the combined block of Table 1,
that by application of such preprocessing, no further improve-
ment over WPE + beamf. preprocessing is achieved.

Overall, the best results are achieved when WPE + beamf.
is used for the test data preprocessing and either orig + multich

or derever adapt systems are used for verification (see Table
1). Out of the beamforming techniques, FW GEV is the best
in this setting. Training the GEV NN to tackle reverberation
does not appear to bring any improvement probably due to the
dereverberation capability of preceding WPE. In terms of EER,
the best combination yields 3.07% EER, which is 13.5% rela-
tively worse result compared to the accuracy on the clean test
data. However, it also means 41.4% relative improvement over
the best possible microphone.

5. Conclusions
We have analyzed multiple approaches to deal with the far-field
speaker verification. Our aim was to develop a robust system
that can work with consistent performance in various acoustic
conditions. In the data preprocessing phase, we explored effects
of the WPE and autoencoder dereverberation. Moreover, we
made use of multichannel data from ad hoc microphone arrays
and we applied blind beamforming (delay-and-sum and gener-
alized eigenvalue beamformers). In order to adapt the SV sys-
tem, we used both simulated and real reverberant data.

We observed that applying the WPE and then choosing an
appropriate microphone in tests can deliver approximately the
same accuracy as the baseline. However, relying on choosing
the best microphone is questionable as a prior knowledge about
the settings of the actual room is rarely available and the ex-
istence of such a good microphone is not guaranteed. On the
other hand, promising results can be achieved when the WPE
succeeded by the GEV beamformer are applied to the micro-
phone array data. In this case, systems adapted with a small
portion of real data or a large amount of simulated data both
dereverberated with WPE perform almost equally.

In the future, the behavior of the WPE dereverberation
should be studied as we observed degradation of results for
some microphones. The D50 acoustic parameter could also be
used for selection of microphones that form a microphone array.
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