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Abstract
In automatic speech processing systems, speaker diarization is
a crucial front-end component to separate segments from differ-
ent speakers. Inspired by the recent success of deep neural net-
works (DNNs) in semantic inferencing, triplet loss-based archi-
tectures have been successfully used for this problem. However,
existing work utilizes conventional i-vectors as the input repre-
sentation and builds simple fully connected networks for metric
learning, thus not fully leveraging the modeling power of DNN
architectures. This paper investigates the importance of learn-
ing effective representations from the sequences directly in met-
ric learning pipelines for speaker diarization. More specifically,
we propose to employ attention models to learn embeddings
and the metric jointly in an end-to-end fashion. Experiments
are conducted on the CALLHOME conversational speech cor-
pus. The diarization results demonstrate that, besides providing
a unified model, the proposed approach achieves improved per-
formance when compared against existing approaches.
Index Terms: speaker diarization, triplet network, metric learn-
ing, attention models

1. Introduction
With the ever-increasing volume of multimedia content on the
Internet, there is a crucial need for tools that can automatically
index and organize the content. In particular, speaker diariza-
tion deals with the problem of indexing speakers in a collection
of recordings, without a priori knowledge about the speaker
identities. In scenarios where the single-speaker assumption
of recognition systems is violated, it is critical to first separate
speech segments from different speakers prior to downstream
processing. Typical challenges in speaker diarization include
the need to deal with similarities between a large set of speak-
ers, differences in acoustic conditions, and the adaptation of a
trained system to new speaker sets.

An important class of diarization approaches rely on ex-
tracting i-vectors to represent speech segments, and then scor-
ing similarities between i-vectors using pre-defined similarity
metrics (e.g. cosine distance) to achieve speaker discrimination.
Despite its widespread use, it is well known that the i-vector ex-
traction process requires extensive training of a Gaussian Mix-
ture Model based Universal Background Model (GMM-UBM)
and estimation of the total variability matrix (i-vector extractor)
beforehand using large corpora of speech recordings. While
several choices for the similarity metric currently exist, likeli-
hood ratios obtained through a separately trained Probabilistic
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Linear Discriminant Analysis (PLDA) model are commonly uti-
lized [1].

More recently, with the advent of modern representation
learning paradigms, designing effective metrics for comparing
i-vectors has become an active research direction. In particu-
lar, inspired by its success in computer vision tasks [2, 3, 4],
many recent efforts formulate the diarization problem as deep
metric learning [5, 6, 7]. For instance, a triplet network that
builds latent spaces, wherein a simple Euclidean distance met-
ric is highly effective at separating different classes, is a widely
adopted architecture. However, in contrast to its application in
vision tasks, metric learning is carried out on the i-vector rep-
resentations instead of the raw data [5]. Consequently, the first
stage of the diarization pipeline stays intact, while the second
stage is restricted to using fully connected networks. Though
this modification produced state-of-the-art results in diarization
and outperformed conventional scoring strategies, it does not
support joint representation and task-based learning, which has
become the modus operandi in deep learning. On the other
hand, Garcia-Romero et al. [6] propose to perform joint em-
bedding and metric learning, but use siamese networks for met-
ric learning, which have generally shown poorer performance
when compared to triplet networks [4].

In this paper, we propose to explore the use of joint repre-
sentation learning and similarity metric learning with triplet loss
in speaker diarization, while entirely dispensing the need for
i-vector extraction. Encouraged by the recent success of self-
attention mechanism in sequence modeling tasks [8, 9], for the
first time, we leverage attention networks to model the tempo-
ral characteristics of speech segments. Experimental results on
the CALLHOME corpus demonstrate that, with an appropriate
embedding architecture, triplet network applied on raw audio
features from a comparatively smaller dataset outperforms the
same applied on i-vectors, wherein the GMM-UBM was trained
using a much larger corpus.

2. Related Work
In this section, we briefly review the recent literature on tech-
niques for speaker diarization. Over the last few years, speaker
diarization approaches have quickly evolved from the tradi-
tional MFCC based GMM segmentation and BIC clustering
[10, 11, 12] to systems centered around i-vector representations
[13, 14]. Initially proposed for speaker verification tasks [15],
i-vectors are low-dimensional features extracted over variable-
length speech segments to compensate for within and between-
speaker variabilities. Different speakers can then be effec-
tively discriminated by utilizing either standard similarity met-
rics (e.g. cosine distance) [16] or likelihood ratios from PLDA
[17]) to cluster i-vectors from the segments.

More recently, several deep learning-based solutions have
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been developed to automatically infer similarity metrics to com-
pare speech segments. More specifically, supervised metric
learning architectures namely siamese [18, 19] and triplet [4, 2]
networks are prevalent. Broadly speaking, these architectures
infer a non-linear mapping A(·), such that, in the resulting
latent space the within-class sample distances are minimized
while the between-class distances are maximized based on a
certain margin. For instance, in [5], Lan et al. proposed to em-
ploy triplet networks on i-vectors to infer a similarity metric,
and achieved state-of-the-art results over conventional metrics
in the diarization literature. Despite its effectiveness, it is im-
portant to note that the feature extraction process is disentangled
from the metric learning network and hence cannot support end-
to-end inferencing. However, recent success of such end-to-end
learning systems in computer vision applications [20, 21, 22]
motivates the design of a deep metric learning architecture that
works directly on the temporal sequences.

Long Short-Term Memory (LSTM) based recurrent net-
works have become the de facto solution to sequence model-
ing tasks including acoustic modeling [23], speech recognition
[24] and Natural Language Processing (NLP) [25]. Recently,
architectures entirely based on attention mechanism have shown
promising value in sequence-to-sequence learning [8] and clin-
ical data analysis [9]. Besides providing significantly faster
training, attention networks demonstrate efficient modeling of
long-term dependencies.

In this paper, we utilize attention networks with the triplet
ranking loss to jointly learn embeddings and a similarity met-
rics for speech segments. To the best of our knowledge, the
approaches in [7] and [6] are the most related to our work.
While Bredin et al. [7] used triplet networks based on LSTMs,
they applied it to a simpler binary classification task of speaker
turn identification. Whereas, in [6], Romero et al. performed
a similar joint learning for diarization, but based on a siamese
network. Compared to the triplet ranking loss, which requires
a margin to be satisfied for each given reference sample, the
cross-entropy loss used in [6] requests correct prediction of
all different-speaker or same-speaker pairs and hence exhibits
much less flexibility.

3. Proposed Approach
As shown in Figure 1(b), the proposed approach works directly
with raw temporal speech features to learn a similarity metric
for diarization. Compared to the baseline in Figure 1(a), the
two-stage training process is simplified into a single end-to-end
learning strategy, wherein deep attention models are used for
embedding computation and the triplet loss is used to infer the
metric. Similar to existing diarization paradigms, we first train
our network using out-of-domain labeled corpus, and then per-
form diarization on a target dataset using unsupervised cluster-
ing. In the rest of this section, we describe the proposed ap-
proach in detail.

3.1. Temporal Segmentation and Feature Extraction

For the speech recordings, we first perform non-overlapping
temporal segmentation into 2-second segments. Following the
Voice Biometry Standardization (VBS) 1, we extract MFCC fea-
tures using 25ms Hamming windows with 15ms overlap. Af-
ter adding delta and double-delta coefficients, we obtain 60-
dimensional feature vectors at every frame. Consequently,
each data sample corresponds to a temporal sequence feature

1http://voicebiometry.org/
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Figure 1: Comparison of diarization strategies and training
data requirements for the baseline approach in [5] and the pro-
posed approach.

xi ∈ RT×d, where T is the number of frames in each segment
and d = 60 is the feature dimension.

3.2. Embeddings using Attention Models

As described earlier, we use attention models to learn embed-
dings directly from MFCC features for the subsequent metric
learning task. The attention model used in our architecture is
illustrated in Figure 2. The module comprised of a multi-head,
self-attention mechanism is the core component of the attention
model [8]. More specifically, denoting the input representation
at layer ` as {h`−1

t }Tt=1, we can obtain the hidden representa-
tion at time step i based on attention as follows:

h`
i =

T∑

t=1

w
(i)
t h`−1

t , 1 ≤ i ≤ T, (1)

w
(i)
t = softmax

(
h`−1
i · h`−1

t√
D

)
, (2)

h`
i ← F(h`

i), (3)

Here, D = 256 refers to the size of the hidden layer and F
denotes a feed-forward neural network. The attention weight in
equation (2) denotes the interaction between temporal positions
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Figure 2: Illustration of the attention model used for computing
embeddings from MFCC features of speech segments.

i and t by performing scaled inner product between the two rep-
resentations. During the computation of hidden representation
at time step i, w(i)

t weights the contribution from other tempo-
ral positions. Note that, these representations are processed by
F before connecting to the next attention module, as shown in
Figure 2. We employ a 1D convolutional layer (kernel size is 1)
with ReLU activation [26] for F . Finally, the attention module
is stacked L times to learn increasingly deeper representations.

Attention-based representations in equation (1) are com-
puted within each speech segment independently and hence this
process is referred to as self-attention. Furthermore, the hidden
representations h`

t are computed using H different network pa-
rameterizations, denoted as heads [8], and the resulting H at-
tention representations are concatenated together. This can be
loosely interpreted as an ensemble of representations. Such a
multi-head operation facilitates dramatically different tempo-
ral parameterizations and significantly expands the modeling
power. Our current implementation sets L = 2 and H = 8.

Although attention computation explicitly models the tem-
poral interactions, it does not encode the crucial ordering infor-
mation contained in speech. The front-end positional encoding
block handles this problem by mapping every relative frame po-
sition t in the segment to fixed locations in a random lookup
table. As shown in Figure 2, the encoded representation is sub-
sequently added up with the input embedding (obtained also
from a 1D CNN layer). Finally, we include a temporal pool-
ing layer to reduce the final representation hL ∈ RT×D into a
D-dimensional vector by averaging along the time-axis.

3.3. Metric Learning with Triplet Loss

The representations from the deep attention model are then
used to learn a similarity metric with the triplet ranking loss.
Note that the attention model parameters and the metric learner
are optimized jointly using back-propagation. In a triplet net-
work, each input is constructed as a set of 3 samples x =
{xp,xr,xn}, where xr denotes an anchor, xp denotes a posi-
tive sample belonging to the same class as xr , and xn a negative
sample from a different class. Each of the samples in x are pro-
cessed using the attention model (Section 3.2) A(·) : RT×d 7→
RD and distances are computed in the resulting latent spaces:

Drp = ‖A(xr)−A(xp)‖2
Drn = ‖A(xr)−A(xn)‖2

The triplet loss is defined as

l(xp,xr,xn) = max(0, D2
rp −D2

rn + α) (4)

where α is the margin and the objective is to achieve D2
rn ≥

D2
rp + α. In comparison, the contrastive loss often used in

siamese network includes the hinge term max(0, α −Dij) for
different-class samples xi and xj , and hence requires α to be
a global margin. Such a formulation significantly restricts the
model flexibility and expressive power.

Given a large number of samples N , the computation of
equation (4) is infeasible among the O(N3) triplet space. It
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(a) NMI score from the speaker clustering results.

250 500 750 1000 1250 1500 1750

Iteration

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

P
u

ri
ty

α = 0.4, M = 16

α = 0.4, M = 64

α = 0.8, M = 16

α = 0.8, M = 64

α = 1.6, M = 16

α = 1.6, M = 64
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Figure 3: Parameter tuning on TEDLIUM development set for
triplet margin α and number of speakers per batch M . Curves
for M = 8 and 32 are omitted for clarity.

is tempting to greedily select the most effective triplets, which
maximizes Drp and minimizes Drn. Instead of performing
such hard sampling, we follow [2] to sample all possible xp

and only selecting semi-hard xn: the negative samples satisfy-
ing D2

rp ≤ D2
rn ≤ D2

rp + α. Additionally, we adopt an online
sampling strategy that restricts the sampling space to the current
mini-batch during training. All sampled triplets are gathered to
compute the loss in equation (4).

For the online sampling scheme, the mini-batch construc-
tion step is crucial. Ideally, each batch should cover both a
large number of speakers and sufficient samples per speaker.
However, we are constrained by the GPU memory (8GB) and
only able to set maximum batch sizeB = 256. We presetM as
the number of speakers per batch and when sampling each mini-
batch,M speakers are first sampled andB/M speech segments
are then sampled for every speaker. As a result, the parame-
terM represents the trade-off between modeling more speakers
each time, and covering sufficient samples for those speakers.
In our experiments, M was tuned based on the performance on
the development set, as will be discussed in Section 4.1.

4. Experiments
In this section, we discuss the training process for our approach
and evaluate its performance on the CALLHOME corpus.

4.1. Triplet Network Training

The proposed model was trained on the TEDLIUM corpus
which consists of 1495 audio recordings. After ignoring speak-
ers with less than 45 transcribed segments, we have a set of
1211 speakers with an average recording length of 10.2 min-
utes. All recordings were down-sampled to 8kHz to match the
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Figure 4: 2D t-SNE visualization of the first 20 speakers from
TEDLIUM development set. Each point corresponds to one
speech segment and they are color coded by the speaker.

target CALLHOME corpus. The temporal segmentation and
MFCC extraction were carried out as discussed in Section 3.1.

For the proposed approach, there are two important train-
ing parameters that need to be selected, i.e. triplet margin α
and the number of speakers per mini-batch M . In order to
quickly configure the parameters, we build a training subset by
randomly selecting 20% of the total recordings and a develop-
ment set by taking 50 recordings from the original TEDLIUM
train, dev and test sets. At every 200 iterations of training on
the subset, we extract the embeddings for the development set
and perform speaker clustering using k-Means, with a known
number of speakers. The clustering performance is evaluated
by the standard Normalized Mutual Information (NMI) and Pu-
rity scores. Based on this procedure, we jointly tuned both pa-
rameters by performing a grid search on α = [0.4, 0.8, 1.6] and
M = [8, 16, 32, 64]. As shown in Figure 3, having a higher
M value consistently provides better clustering results and al-
leviates model overfitting. Additionally, a lower triplet margin
generally helps the training process. Based on these observa-
tions, we configured α = 0.8,M = 64 to train our model on
the entire TEDLIUM corpus.

To study the embeddings from the attention model and the
impact of triplet loss, we show the 2D t-SNE visualization [27]
of samples in the development set in Figure 4. It is observed that
the model is highly effective at separating unseen speakers and
provides little distinction on segments from the same speakers.
These embeddings achieve 0.94 score on both NMI and Purity,
with k-Means clustering for the development set.

4.2. Diarization Results

The trained model is evaluated on the CALLHOME corpus
2 for diarization performance. CALLHOME consists of tele-
phone conversations in 6 languages: Arabic, Chinese, English,
German, Japanese and Spanish. In total, there are 780 tran-
scribed conversations containing 2 to 7 speakers. After obtain-
ing the embeddings through the proposed approach, we perform
x-means [28] to estimate the number of speakers and then use k-
means clustering with the estimation. We force x-means to split
at least 2 clusters by initializing it with 2 centroids. Note that
there are usually multiple moving parts on complete diarization

2https://ca.talkbank.org/access/CallHome/

Table 1: Diarization Results on CALLHOME Corpus.

System DER (%)

i-vector
cosine 18.7

PLDA [1] 17.6
Triplet with FCN [5] 13.4

Proposed Approach 12.7

systems in the literature. In particular, more sophisticated clus-
tering algorithms [29], overlapping test segments and calibra-
tion [14] can be incorporated to improve the overall diarization
performance. However, in this work we focus on investigating
the efficacy of the DNN modeling and fix the other components
in their basic configurations.

We utilize pyannote.metric [30] to calculate Diariza-
tion Error Rate (DER) as the evaluation metric. Although DER
collectively considers false alarms, missed detections and con-
fusion errors, most existing systems evaluated on CALLHOME
[14, 6] accounts for only the confusion rate and ignores over-
lapping segments. Following this convention, we use the oracle
speech activity regions and use only the non-overlapping sec-
tions. Additionally, there is a collar tolerance of 250ms at both
beginning and end of each segment. We compare the proposed
approach with the following baseline systems:

Baseline 1: i-vector + cosine/PLDA scoring. We uti-
lize VBS pre-trained models for i-vector extraction on CALL-
HOME corpus. The specific GMM-UBM and i-vector extrac-
tor training data are shown in Figure 1(a). Though different
from ours, the training corpus is significantly more compre-
hensive than the TEDLIUM set we used. The GMM-UBM
consists of 2048 Gaussian components and the i-vectors are
600−dimensional. We also used the backend LDA model con-
tained in VBS for i-vector pre-processing. In the actual cluster-
ing, cosine or PLDA scores are used to calculate the sample-to-
centroid similarities at each iteration.

Baseline 2: i-vector + triplet with FCN training. This
baseline is very similar to [5] except for 2 modifications: 1) We
do not consider the speaker linking procedure as there are very
few repeated speakers in CALLHOME. 2) We use a larger FCN
network than [5] to allow a fair comparison to the proposed ap-
proach. The hidden layers have size 512 − 1024 − 512 − 256
and batch normalization [31] is applied at each layer after the
ReLU activation. Further, i-vectors are extracted on TEDLIUM
based on the transcribed speech sections with average length of
8.6 seconds. The triplet network is tuned in a similar proce-
dure as in Section 4.1 and the best parameters were found to be
α = 0.4,M = 16.

The comparison between the proposed approach and the
baselines is shown in Table 1. It is observed that baseline 2 in-
deed exceeds both conventional i-vector scoring methods. How-
ever, our unified learning approach trained on a much smaller
TEDLIUM corpus achieves better performance, this evidencing
the effectiveness of end-to-end learning.

5. Conclusions
This paper studies the role of learning embeddings under a
triplet ranking loss for speaker diarization. Results on the
CALLHOME corpus show that when compared to training a
UBM model and then a separate triplet DNN, the two steps can
be combined together to achieve improved performance with
less training effort. Future work will investigate more sophisti-
cated sampling strategies for metric learning [32] and compara-
tive studies with existing DNN architectures [29, 6].
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