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Abstract
The accurate classification of nonverbal human produced

audio events opens the door to numerous applications beyond
health monitoring. Voluntary events, such as tongue clicking
and teeth chattering, may lead to a novel way of silent interface
command. Involuntary events, such as coughing and clearing
the throat, may advance the current state-of-the-art in hearing
health research. The challenge of such applications is the bal-
ance between the processing capabilities of a small intra-aural
device and the accuracy of classification. In this pilot study,
10 nonverbal audio events are captured inside the ear canal
blocked by an intra-aural device. The performance of three clas-
sifiers is investigated: Gaussian Mixture Model (GMM), Sup-
port Vector Machine and Multi-Layer Perceptron. Each classi-
fier is trained using three different feature vector structures con-
structed using the mel-frequency cepstral (MFCC) coefficients
and their derivatives. Fusion of the MFCCs with the auditory-
inspired amplitude modulation features (AAMF) is also investi-
gated. Classification is compared between binaural and monau-
ral training sets as well as for noisy and clean conditions. The
highest accuracy is achieved at 75.45% using the GMM classi-
fier with the binaural MFCC+AAMF clean training set. Accu-
racy of 73.47% is achieved by training and testing the classifier
with the binaural clean and noisy dataset.
Index Terms: nonverbal, classification, hearing protection,
biosignals

1. Introduction
The human body communicates countless nonverbal signals
(heartbeat, blinking, coughing, etc...) that can be revealing
of one’s health and emotional state. Capturing and classify-
ing such nonverbal events has gained much interest over the
years [1, 2]. Namely, the combination of well performing ma-
chine learning algorithms and the boom in wearable devices has
opened up a door for continuous health monitoring [3, 4]. Of-
ten, these nonverbal signals are either inaudible (blinking), too
faint (clearing the throat), or overlooked (teeth clicking) when
considering the communication signals sent by the human body.
Fortunately, the ear canal can act as an efficient medium to these
nonverbal signals.

When the ear canal is blocked at the entry, there is a buildup
of energy from soft tissue and bone conduction causing an am-
plification in the bone-conducted sounds in the ear canal. This
phenomenon is called the occlusion effect [5]. Thus, by way of

the occlusion effect, intra-aural devices that create an acoustical
seal in the ear canal have access to an extensive variety of hu-
man produced verbal and nonverbal audio events. Martin and
Voix [3], have shown that the occluded ear is a reliable place
to capture breathing and heartbeat signals for health monitor-
ing. However, other relevant signals such as blinking, coughing
and clicking of the teeth can also be recorded from inside the
occluded ear. In this paper, two new applications for the clas-
sification of nonverbal human produced audio events are intro-
duced.

The accurate classification of such signals allows for di-
verse applications beyond continuous health monitoring. One
such application, is addressing a significant hurdle with in-ear
dosimetry. To ensure safety and avoid noise-induced hearing
loss, workers in noisy environments are usually equipped with
hearing protection devices and dosimeters calculating the indi-
vidual’s noise dose over the work day. Recently, in-ear dosime-
try has gained much interest as it offers a more accurate rep-
resentation of the worker’s true noise dose [6, 7]. An obstacle
with in-ear dosimetry is the effect of physiological signals on
the accumulated noise dose [8, 9]. To an untrained dosimeter
the levels inside the ear caused, for example, by clearing the
throat or coughing are mistakenly added to the dose calculation
leading to inaccurate dosimetry readings at the end of the work-
day. Therefore, the ability to classify and reject physiological
noise from the calculation of the daily noise dose will lead to a
more accurate representation of the worker’s noise exposure.

Another application, is to use subtle voluntary actions such
as explicit tongue and teeth clicking to replace audible ver-
bal command when necessary in human-machine interactions.
Silent interfaces as such have gained much attention in recent
years, as they provide an inconspicuous way of communication
that is robust to ambient noise and accessible to people with
speech impairment [10, 11]. Tongue movements have been ex-
tensively explored as a silent interface for people with limited
mobility [12, 13]. Although the ear has also been explored as a
means for a silent interface [14], to the best of our knowledge,
none have explored the opportunity of using nonverbal acous-
tic signals captured inside the occluded ear for human-machine
interaction.

Nonverbal acoustic events such as gunshots, sirens and
screams [15, 16] as well as people walking and closing doors
[17] have been classified for security purposes. Only a few have
classified human produced acoustic nonverbal events such as
different types of cough [18] and blinking [19]. Often, Support
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vector machine (SVM) are used for non-verbal acoustic event
recognition [16, 17]. While neural network algorithms such as
Multi Layer Perceptron (MLP) and Convolutional Neural Net-
works (CNN) have also been used successfully [17], they re-
quire larger datasets. Gaussian Mixture Models (GMM) are also
used and have good results in audio classification problems [2].

This paper investigates the classification of non-verbal hu-
man produced audio events captured inside an occluded ear.
Using Mel-Frequency Cepstral Coefficients (MFCCs), their
derivatives, zero-crossing rate (ZCR), and auditory-inspired
amplitude modulation features (AAMF) as features, the perfor-
mance of an SVM, GMM and MLP classifier is validated using
cross validation and compared. The data collection and clas-
sifier description are presented in Section 2. The results are
shown in Section 3, followed by the conclusions in Section 4.

2. Methodology
2.1. Data Collection

Non-speech audio signals are recorded as described by [3]. In
each ear, participants were equipped with an intra-aural de-
vice developed by EERS Global Technologies Inc. (Montreal,
Canada), shown in Fig. 1. Each earplug contains an in-ear mi-
crophone to capture audio signals occurring in the occluded
ear. Audio data was recorded using a multichannel digital audio
recorder (H4n, Zoom Corporation, Tokyo, Japan) at a sampling
rate of 48 kHz and 24 bit resolution. Data was collected from
25 participants, consisting of 19 males and 6 females, aged be-
tween 21 and 53, with an average age of 28. Participants were
instructed to perform the actions associated with each nonver-
bal audio event (teeth chattering, tongue clicking, etc...) for
at least ten seconds. In certain situations, participants were
asked to repeat until a clear signal could be recorded. Audio
signals were then labeled by hand post hoc. For this study talk-
ing (t) and the following 10 nonverbal audio events were used
for classification: clicking of teeth softly (cts), clicking of teeth
loudly (ctl), tongue clicking (cl), blinking forcefully (bf), clos-
ing the eyes (ce), closing the eyes forcefully (cef), grinding the
teeth (gt), clearing the throat (clt), saliva noise (sn), and cough-
ing (c). Since these signals are captured by way of the occlu-
sion effect, their bandwidth is limited to < 2 kHz [5, 20]. For
this reason, the signals were downsampled to 8 kHz to limit the
bandwidth to informative data.

Envisioning that this type of application is pertinent in noisy
settings, it is of interest to investigate the classification of sig-
nals degraded by noise. Therefore, a noisy dataset was created
post-hoc by adding factory noise from the NOISEX-92 database
[21] at 10 dB signal-to-noise ratio (SNR). In situations where
the SNR is much lower, denoising algorithms would be used to
clean the captured in-ear signals [3, 22]. For the scope of this
paper, we will look at signals degraded by noise but not to the
extent where denoising algorithms are engaged.

2.2. Feature Vectors

Samples of 400 ms are extracted for each of the aforementioned
audio events captured from both the left and right ear. Table
1 shows the amount of monaural samples extracted for each
class, i.e. the total number of samples is doubled binaurally.
Typically, MFCCs have been used as features [15, 16, 17] to
train classifiers for both verbal and non verbal events. Some
have added wavelets [15], Perceptual Linear Prediction (PLP),
or ZCR [16] to the feature vector. In this work, events are
classified using MFCCs as features extracted using a window

Figure 1: The intra-aural device used to record the nonverbal
audio signals captured inside the ear.

Event Number of samples
Clicking of teeth softly (cts) 246
Clicking of teeth loudly (ctl) 304
Tongue clicking (cl) 364
Blinking forcefully (bf) 207
Closing the eyes (ce) 286
Closing the eyes forcefully (cef) 329
Grinding the teeth (gt) 170
Clearing the throat (clt) 163
Saliva noise (sn) 213
Coughing (c) 219
Talking (t) 526

Table 1: The total of 400 ms samples for each class.

length of 50 ms with a 25 ms overlap. Parameters such as win-
dow length and overlap were selected after a pilot experiment,
where 50 ms and 25 ms, respectively, were shown to provide
the best results for the task at hand. Each MFCC vector consists
of 13 MFCCs, delta, and delta-delta coefficients resulting in a
39 dimensional vector for each frame. In addition, due to the
atypical nature of the nonverbal signals captured from inside
the occluded ear, it is of interest to investigate other features
as a complement or replacement of the MFCCs. In this work,
we investigate the use of the auditory-inspired amplitude mod-
ulation features (AAMF), which were first proposed by Sarria
et al. (2017) [23] to enhance speaker verification with whis-
pered speech. When compared to standard MFCCs, AAMFs
are said to have high discriminative capabilities and could, thus,
be useful for the purposes of this work. AAMFs were proposed
from blocks of spectrograms consisting of multiple consecu-
tive short-time frames. As this leads to high-dimensional fea-
ture representations, principal component analysis (PCA) was
adopted to reduce the number of variables in the feature space
[23]. In this approach, it is assumed that an observed time-
domain signal is the result of multiplying a low-frequency mod-
ulator (temporal envelope) by a high-frequency carrier, and the
analysis is carried out by using acoustic subbands. In the case
of speaker recognition applications, the modulation frequency
(modulation domain) represents the frequency content of the
subband amplitude envelopes and it potentially conveys infor-
mation about speaking rate and other speaker specific attributes
[24]. Hence, it is expected that AAMF features would be more
informative than standard MFCC when describing changes in
slow varying amplitude characteristics. As suggested in [23],
time contexts of 200ms (a matrix with 216 elements - 27 acous-
tic bands × 8 modulation bands = 216 dimensions) can be col-
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lapsed into a vector and used as standard features after applying
PCA to keep the 40 first components retaining 98.7% of cumu-
lative variance.

Three different structures for the feature vector are used and
compared. The first consists of the extracted MFCCs, the delta
and the delta-delta from each frame concatenated into a one-
dimensional vector appended with the ZCR of the entire sample.
The second is framed (-F) and consists of 15 one-dimensional
MFCC vectors appended with the ZCR of each frame for each
sample. The third follows a similar structure as the second but
includes context (-C). Each of the 15 feature vectors contains
the 4 preceding frames, the target frame, and the 4 following
frames. The choice of including 4 frames before and after was
done ad hoc by investigating the change in average accuracy
over all classifiers. An example of the change in accuracies as
a function of the number of contextual frames used is shown in
Section 3. For the remainder of the paper, for convenience, the
feature vectors based on MFCCs, deltas, delta-deltas, and ZCR
are referred to simply as the MFCC feature vectors.

Finally, we investigate the effects of training with samples
captured from only one of the two ears versus including binaural
samples. This is of interest because several factors contribute to
the shape of the captured signal in an occluded ear: the shape
of the ear canal and the way the intra-aural device fits in the
ear [25, 26]. Therefore, even though the signals were captured
simultaneously from both ears, using binaural data could serve
as a type of data augmentation caused by slight differences in
the left and right signals.

2.3. Classification

For classification, SVM, GMM, and an MLP neural network
are used and compared. The hyper-parameters of the models
are chosen to optimize the overall accuracy of the model over
all classes.

A one-vs.-all classifier is used for the SVM classifier with a
linear kernel to compute the 11 hyperplanes needed for the clas-
sification. For the GMM, a diagonal covariance matrix is used
with 2 Gaussians components per class for the one-dimensional
structure and 15 Gaussians components for the framed and con-
textual structure. Two hidden layers with a rectified linear ac-
tivation function and a linear activation function for the output
layer are used for the MLP. The network is trained using the
cross entropy loss function and the Adam method of optimiza-
tion [27].

When using the framed and contextual structure, one fea-
ture vector does not represent an entire sample. Therefore,
the 15 feature vectors are classified independently and the fi-
nal classification decision for the sample is made based on the
most occurring class from each frame.

2.4. Validation

For the validation, a 10 fold cross validation is used where the
different participants are separated in different batches to avoid
testing on a trained test subject. The accuracy is then calculated
for each fold by averaging the accuracy over each class to re-
move any weighting caused by the varying number of samples
for each class.

3. Results
To start we use the clean binaural dataset to train and test all
three classifiers using the three different feature vector struc-
tures. Fig. 2 shows the average accuracies over all classes for

0.692

0.755
0.739

0.592

0.498

0.340

0.633
0.579

0.409

Figure 2: Accuracy for each classifier using the binaural clean
dataset to train and test, averaged over the 10-folds, where (-F)
denotes the framed feature vector, (-C) denotes the contextual
feature vector, and no affix denotes the one-dimensional feature
vector.

each classifier. As can be seen from Fig. 2, the GMM classi-
fier using the contextual feature vector structure (GMM-C) re-
sults in the highest average accuracy of 75.47%, followed by
the GMM with the framed feature vector (GMM-F) at 73.88%.
The worst performing classifier is the MLP with the framed fea-
ture vector (MLP-F) at 34.03% accuracy. The degraded perfor-
mance of the MLP could be attributed to the size of the dataset.
In addition, the superior performance of the GMM classifier is
advantageous, considering the applications of interest, as it was
the fastest classifier to execute.

Using the GMM-C classifier, we compare the results be-
tween using a monaural and a binaural dataset. The mean ac-
curacy over all classes for the GMM-C classifier are shown in
Table 2. There is a benefit in using the binaural dataset versus
monaurally. As previously discussed, variations in fit and ear
canal shape contribute to differences in the captured in-ear sig-
nal. Due to this type of data augmentation caused by using the
binaural dataset and the desire to implement this on a low com-
plexity embedded system, only the performance of the GMM
classifier with the contextual feature vector structure using the
binaural dataset is presented for the remainder of the paper.

To better understand these nonverbal signals, as well as the
performance of the classifier, the confusion matrix of the GMM-
C classifier is shown in Fig. 3. It can be seen that besides
speech, the most accurately classified event is coughing (c) at
85.2% accuracy, followed by closing the eyes (ce) and clearing
the throat (clt) at 82.5% accuracy each. The most difficult event
to classify is clicking of the teeth loudly (ctl) at 63.3%.

The general performance of the classifier could be at-
tributed to the use of MFCCs, which are designed to charac-
terize speech. In order to add complementary information ex-
tracted with AAMF features, we investigate the use of a fusion
scheme, as it has shown to be effective at improving perfor-
mance in many applications by combining the strengths of dif-
ferent feature representations [28, 29]. Particularly, we look at
the effects of using fusion at the feature level of the AAMFs
concatenated with the MFCCs. Figure 4 shows the confusion
matrix when using the AAMFs in addition to MFCCs to train
the GMM classifier. The overall accuracy as a consequence of
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Figure 3: Confusion matrix of the GMM classifier with MFCC
contextual features trained and tested with the clean dataset.
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Figure 4: Confusion matrix of the GMM classifier with MFCC
+ AAMF contextual features trained and tested with the clean
dataset.

complementing the MFCCs with AAMFs is 75.54%. Although
this may seem an unremarkable difference from simply using
MFCCs, it is important to study the confusion matrices in both
conditions. The classification accuracy of 4 nonverbal classes
increases when complementing with AAMFs. Namely, the clas-
sification accuracy of clicking the teeth softly (cts) is increased
by 8.7%, that of saliva noise (sn) is increased by %5.2, and of
grinding the teeth (gt) by 2.9%. The increase in classification
accuracy for certain classes is indicative of the nature of those
classes. Specifically, we can infer that these classes are better
categorized by changes in their slow-varying amplitude enve-
lope.

Next, we investigate the effect of a noisy dataset on the
GMM-C classifier using MFCCs alone as well as their fusion

Dataset Left Right Binaural
Overall Mean 0.750 0.733 0.755

Table 2: Overall mean for the GMM classifier with contextual
features (GMM-C) using monaural versus binaural datasets.

Test Dataset
Features Train Dataset Clean Noisy
MFCC Clean 0.754 0.243
MFCC Clean&Noisy 0.731 0.705

MFCC+AAMF Clean 0.755 0.329
MFCC+AAMF Clean & Noisy 0.735 0.728

Table 3: Overall mean for the GMM classifier with MFCC
contextual features (GMM-C) using Clean, Noisy and Clean &
Noisy datasets for training and testing.

with AAMFs for training. When trained with only the clean
MFCC features, the performance of the classifier drastically de-
creases to 24.3%. Training with both noisy and clean samples
increases the robustness of the classifier to noise but degrades
the overall classification of clean signals as can be seen from
Table 3. The classification accuracy of noisy events increases
to 70.45% when using a combined (noisy and clean) training
dataset, at a cost of a 2.37% decrease when classifying clean
signals. Introducing the AAMFs to complement the MFCCs
and using both clean and noisy samples for training increases
the overall accuracy of the classifier when testing noisy and
clean signals to 72.79% and 73.47% respectively, as presented
in Table 3. In general, adding the fusion scheme of MFCCs with
AAMFs increases the robustness of the classifier toñoise.

4. Conclusions
Classifying nonverbal human produced audio events can open
up the door to many applications beyond health monitoring.
In this paper, classification of nonverbal events was achieved
with up to 75.54% average accuracy across all classes for clean
events and 73.47% for noisy events with the GMM classifier
and the contextual feature vectors using a fusion of MFCCs and
AAMFs. Complementing the MFCC features with AAMFs in-
creased the classification accuracy for some classes but not oth-
ers. This suggests that ensemble learning could be beneficial in
increasing the overall classification accuracy.

The results of the addition of AAMFs further suggest that
the nature of theses nonverbal events should be more closely in-
vestigated and understood. One potential avenue to explore, is
using features that are more adapted to low frequencies to ac-
commodate for the limited bandwidth of bone conduction. The
major challenges for this type of classification are the choice of
features as well as the desire to limit computational complexity.
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