
LSTM based Cross-corpus and Cross-task Acoustic Emotion Recognition

Heysem Kaya1, Dmitrii Fedotov2,3, Ali Yeşilkanat4, Oxana Verkholyak2, Yang Zhang5,
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Abstract
Acoustic emotion recognition is a popular and central research
direction in paralinguistic analysis, due its relation to a wide
range of affective states/traits and manifold applications. Devel-
oping highly generalizable models still remains as a challenge
for researchers and engineers, because of multitude of nuisance
factors. To assert generalization, deployed models need to han-
dle spontaneous speech recorded under different acoustic condi-
tions compared to the training set. This requires that the models
are tested for cross-corpus robustness. In this work, we first in-
vestigate the suitability of Long-Short-Term-Memory (LSTM)
models trained with time- and space-continuously annotated af-
fective primitives for cross-corpus acoustic emotion recogni-
tion. We next employ an effective approach to use the frame
level valence and arousal predictions of LSTM models for ut-
terance level affect classification and apply this approach on the
ComParE 2018 challenge corpora. The proposed method alone
gives motivating results both on development and test set of the
Self-Assessed Affect Sub-Challenge. On the development set,
the cross-corpus prediction based method gives a boost to per-
formance when fused with top components of the baseline sys-
tem. Results indicate the suitability of the proposed method for
both time-continuous and utterance level cross-corpus acoustic
emotion recognition tasks.
Index Terms: speech emotion recognition, cross-corpus emo-
tion recognition, context modeling, LSTM, computational par-
alinguistics

1. Introduction
Studies in emotion recognition play a central role in both com-
putational paralinguistics and affective computing. Being a cen-
tral theme is partly due to conceptual and psychophysical rela-
tion of emotion to a range of affective states and traits. Studies
in emotion recognition and in the general research area of affec-
tive computing are gaining momentum towards maturity, thanks
to sharing of resources and common protocol challenges such as
the Computational Paralinguistics (ComParE) Challenge series.

Acoustic emotion recognition in realistic conditions is chal-
lenging due to a range of factors such as speaker, gender,
language and recording environment variations. Thus, cross-
corpus acoustic emotion recognition that aims to cope with
these issues became a popular research direction. Proposed
adaptation approaches range from normalization strategies [1,
2] to covariate shift compensation via employing transfer learn-
ing methods [3], from Canonical Correlation Analysis based

multi-view approaches [4] to denoising auto-encoder based do-
main adaptation schemes [5, 6].

Aforementioned methods show methodological and exper-
imental improvement over state-of-the-art, however all of them
were tested across corpora using utterance level emotion recog-
nition setting. Moreover, there is a growing research body on
dimensional affect recognition with Long-Short-Term-Memory
(LSTM) Recurrent Neural Networks (RNN) [7, 8, 9].

Inspired from the outstanding context modeling capability
of LSTM-RNN, when annotations with sufficient frequency are
provided, in this paper we investigate the suitability of cross-
corpus and cross-task acoustic emotion recognition. That is, we
seek to benefit from LSTM models trained on time- and space-
continuously annotated corpora, on a different corpus with ut-
terance level categorical emotion annotations. We device a sim-
ple but effective approach to the problem and combine the pre-
dictions of the proposed approach with the top components of
the baseline system provided by the ComParE 2018 challenge
organizers. Additionally, we carry out extensive experiments
on cross-corpus dimensional affect prediction on three public
corpora prior to application of the proposed approach on the
challenge corpus.

In line with our recent experience on paralinguistic and
multi-modal affective computing [10], we employ least squares
based classifiers such as Kernel Extreme Learning Machines
(KELM) and Partial Least Squares (PLS) regression based clas-
sifiers for modeling utterance-level feature representations. Fur-
thermore, we employ their weighted versions to cope with the
class imbalance problem, typically observed in challenge cor-
pora [11].

The remainder of the paper is organized as follows. We in-
troduce the proposed framework and brief its components in the
next section. In Section 3, we present experiments across three
dimensional corpora in arousal and valence dimensions. Sec-
tion 4 summarizes the experiments on the Ulm State-of-Mind
Speech (USoMS) corpus. Section 5 concludes with discussion.

2. Proposed Framework
In our proposed framework, we combine discretized predictions
of LSTM models trained on time- and space-continuously anno-
tated corpora with the components of the baseline system [12].
The pipeline is illustrated in Figure 1, where the dashed lines
correspond to processing of external dimensional corpora.

We first try to reproduce the baseline systems using SVM
classifier and further improve learner performance with least
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Figure 1: Pipeline of the proposed framework.

squares based weighted kernel classifiers. The feature set com-
ponents of the baseline system comprise functional features ex-
tracted via openSMILE [13], Bag of Audio Words extracted
with openXBOW [14] and the suprasegmental features from se-
quence to sequence autoencoder auDeep [15].

For LSTM based predictions, we train models on three
corpora, namely RECOLA [16], SEMAINE [17] and Cre-
ativeIT [18] for both arousal and valence dimensions, although
the target task in the Self-Assessed Affect Sub-Challenge is a
three-state valence classification task. We hypothesize that the
frame-level affect predictions can be summarized over the utter-
ance using mean functional and then thresholded for discretiza-
tion. The thresholds to separate target classes are optimized for
UAR on the challenge training set. Note that this is a cross-
corpus and cross-task affect recognition setting (from frame
level dimensional affect to utterance level categorical emotions)
and the resulting predictions are ordinal classes of valence. The
final score-level fusion of the utterance level categorical predic-
tions with other systems is done after converting the categorical
labels y into a one vs. all code matrix S:

St,l =

{
1 if yt = l,
0 if yt , l. (1)

2.1. Least Squares based Weighted Kernel Classifiers

In addition to the Support Vector Machines (SVM) used in the
challenge baseline systems, we use Kernel ELM and PLS re-
gression motivated from their fast and accurate learning capa-
bility and state-of-the-art results on recent paralinguistic/multi-
modal challenge corpora [19, 20]. We obtain linear kernels
from the dataset and use them in PLS and ELM, optimizing the
hyper-parameters on the development set. For handling the im-
balanced data, we employ a variant of ELM dubbed Weighted
ELM [21]. Inspired from it, in 2017 ComParE challenge, we
applied this simple and efficient scheme to KPLS, introducing
WKPLS [11], which gives higher weights to minority class in-
stances in model learning.

2.2. Fusion

In line with experience on former challenge corpora [10, 11,
20], we investigate feature level fusion and two variants of score
level fusion. The first is simple weighted fusion (SF) of scores,
where the classifier confidence scores S A and S B are fused using
weight γ ∈ [0, 1]:

S f usion = γ ∗ S A + (1 − γ) ∗ S B. (2)

Secondly, we apply weighted score fusion (WF) for each
model and class. Let M and L denote the number of models
and classes, respectively. The optimal fusion weights W f usion

i, j ∈
[0, 1], 1 ≤ i ≤ M, 1 ≤ j ≤ L,

∑M
i=1 W f usion

i, j = 1, are searched over
a pool of randomly generated matrices.

3. Cross-Corpus Experiments for
Dimensional Affect Prediction

This section presents the data, experimental setting and results
for time- and space-continuous cross-corpus acoustic emotion
prediction task for both the training and test corpora.

3.1. Data Description

To perform cross-corpora emotion recognition we used three
well known corpora annotated in arousal and valence di-
mensions, namely RECOLA [16], SEMAINE [17] and Cre-
ativeIT [18].

RECOLA database consists of spontaneous interactions in
French collected during solving of a collaborative task. Avail-
able version of the database has 23 recordings from different
speakers with duration of 5 minutes each. Annotations from 6
raters are provided for each recording with frequency of 25 Hz.
Participants are aged between 18 and 25 years old with mean
of 21.3, almost equally distributed in gender (10 males, 13 fe-
males) and have three different mother tongues: French (17),
Italian (3) and German (3).

SEMAINE database was collected during an interaction in
English between users and Sensitive Artificial Listener (SAL),
which may be represented by operator (solid SAL), partially
controlled by operator (semi-automated SAL) and completely
functioning through dialogue system (automated SAL). In our
research we chose only users’ recording in Solid SAL scenario.
The data consists of 24 recordings from 20 speakers with aver-
age duration of 18.6 minutes. Speakers have an average age of
30.3 years, while 60% of them are males and 40% - females.
Annotations are available from up to 8 raters with frequency of
50 Hz.

CreativeIT database consists of two types of interactions:
repetition of one phrase and semi-spontaneous dialogue with
predefined aims of both speakers. To increase applicability of
the data, only the second type of interaction was used in our re-
search. Selected data consists of 31 recordings from 15 speakers
with average duration of 4.3 minutes. The database is annotated
by 3 raters with frequency of 60 Hz.

Distributions of instances in arousal and valence dimen-
sions are shown in Figure 2, where we observe different skew-
ness and kurtosis statistics for each corpus. While RECOLA
corpus annotations are highly centered around zero and peaked,
SEMAINE and CreativeIT corpora have annotation distribu-
tions that are skewed in opposite directions compared to a each
other. Moreover, while the arousal valence annotations are pos-
itively correlated in RECOLA and SEMAINE, in CreativeIT
they are negatively correlated. As will be shown in experimental
results, this complicates the cross-corpus recognition for Cre-
ativeIT both as source and target corpus.

Figure 2: Distribution of instances in arousal (x-axis) and va-
lence (y-axis) dimensions for RECOLA, SEMAINE and Cre-
ativeIT, respectively.
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3.2. Data Processing

To create a model suitable for all the data available, we re-
duced annotation rate to 25 Hz and transformed labels of the
training corpora using min/max scaler. Time-continuous labels
were shifted backwards, correcting reaction lag of annotators
[22, 23]. From raw audio recordings, 130 features (65 LLDs
and their first derivatives) were extracted with openSMILE [13]
using ComParE 2016 configuration [24]. Following the previ-
ous research, features were normalized using z-score transfor-
mation at a speaker level [2], then sparsed to cover 8 seconds of
context with a time window size of 16 frames [25].

3.3. Experimental Setting and Results

Experiments are carried out in a purely cross-corpus setting,
where we train on one, validate on another (used to optimize
the number of epochs) and test on the third corpus. Further
for avoiding over-fitting, in all experiments we fix the learning
rate to 0.001, which is based on previous experimentation on
RECOLA [25].

In the training of LSTM models, we used only five epochs
using all instances of the source corpus. In order to assess the
cross-corpus prediction performance across-corpora having dif-
ferent mean, variance and skewness statistics as observed in
Figure 2, we use the Cross-Correlation (CC, also known as
Pearson’s Correlation) measure.

In Table 1, comparative cross-corpus performances of
LSTM models are given. From the table, three patterns emerge.
First, we observe that cross-corpus arousal scores are always
positive, showing strong and significant correlations between
predictions and the ground truth as opposed to predominantly
poor results in the valence dimension. This is a common pat-
tern as long as acoustic emotion recognition is concerned. Sec-
ondly, we see that the arousal predictions even with a single
epoch training are statistically significant (p < 10−50). The final
pattern is that due to its different correlation structure between
the affect primitives, results with CreativeIT corpus are either
poorer (for arousal) or strongly negative (for valence) compared
to the other two corpora. We proceed with cross-corpus cross-
task predictions targeting the challenge corpus, keeping in mind
the anomaly related to CreativeIT corpus.

4. Experiments on Ulm State-of-Mind
Speech Corpus

Ulm State-of-Mind Speech Corpus (USoMS) corpus contains
emotional speech utterances from 100 subjects (85f) having a
mean age of 22.3 years. The participants self-reported their
mood in arousal and valence dimensions before and after they
told two positive and two negative narratives. The scores of
valence dimension are discretized and used as a three class
(low/medium/high) classification problem. It is important to
note that the classes are strongly imbalanced and the baseline
system employs an instance upsampling strategy to overcome
this issue. For further details on the corpus and the challenge
setting, the reader is referred to the paper on challenge [12].

4.1. Experiments with Baseline Approaches and Features

Since 2017 ComParE challenge [26], the baseline systems not
only amount to a single type of feature but use multiple sub-
systems and their fusion. Moreover, the optimal test set scores
are taken as baselines, instead of optimizing the parameters
on development and using the corresponding parameters to re-

train the combination of the training and development sets.
This makes it almost impossible to outperform baseline perfor-
mances without using the components of the baseline system.
Thus, we first try to reproduce the baseline system and trial dif-
ferent classifiers on its feature sets.

The comparative results of the four approaches that are pre-
sented in the challenge paper and the corresponding results we
obtained are summarized in Table 2. We should note that the
development set results are indicative of the test results only
when openSMILE functional features (OSFUN) are used. The
reproduced results are similar or better than those reported in
the baseline paper in two cases (OSFUN and OSBOAW , which is
BoAW representation of the same set of 130 LLDs) and way
lower in the other two, neural network based approaches.

Concerning the systems used to generate the test set base-
lines, no fusion system uses the END2YOU (CNN + LSTM)
approach [12]. In line with this finding, we focused on the
other three approaches and modeled them with alternative, least
squares regression based classifiers. Table 3 summarizes best
development set UAR performances of baseline features trained
with classifiers mentioned in Section 2.1. We see that for each
feature type better performances could be reached with pro-
posed classifiers, and fused features can improve UAR up to
62.11%. However, when we analyze confusion matrices of each
classifier outputs, we observe that KPLS consistently favors ma-
jority classes, keeping minority class recall close to zero and
as such not contributing to classifier fusion. We thus combine
the scores of the remaining three classifiers, trained on com-
bined OSFUN and OSBOAW feature set and obtain a development
set UAR of 64.0%. This is subsequently fused with the cross-
corpus LSTM predictions for test set submissions.

4.2. LSTM based Cross-corpus and Cross-task Affect Pre-
diction

After evaluating the components of the baseline system, we
proceed with the proposed cross-corpus and cross-task affect
prediction based method. Here, we obtain frame-level pre-
dictions, apply smoothing of the overlapping predictions from
different analysis windows and subsequently use mean func-
tional to summarize the affective primitives over the utterance.
Finally, the utterance level valence scores are converted into
low/medium/high categories with thresholds optimized on the
target set. Table 4 summarizes UAR scores optimized on the
training set of the USoMS corpus. In general, we obtain higher
than chance level UAR performance in all but one case, and
the highest UAR (60.1%) on the development set is better than
the best individual classifier reported in the challenge paper
(56.5%). Another interesting finding is that, models trained
with arousal as target variable were also found to give good
performance on the development set, reaching UAR of 52.1%.

4.3. Fusion and Test Set Results

The proposed method aims to combine LSTM based cross-
corpus and cross-task prediction and within-corpus affect recog-
nition using fixed-length suprasegmental feature representation
methods. To this end, we optimized models separately and com-
bined them at the score level.

For the test set submissions, we wished to see the individual
performance of cross-corpus approach. In our first submission,
we used the combination of predictions trained on SEMAINE
corpus with arousal and valence targets, with thresholds opti-
mized on the training set of USoMS. This resulted in develop-
ment and test set UAR scores of 62.0% and 47.4%, respectively.
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Table 1: Cross-correlation (CC) results of LSTM models in cross-corpus setting. Models are optimized on the validation corpus.

Arousal Valence

1 epoch Optimal Epoch 1 epoch Optimal Epoch

Train Validation Test Val. CC Test CC Val. CC Test CC Val. CC Test CC Val. CC Test CC

RECOLA SEMAINE CreativeIT 0.411 0.390 0.411 0.390 0.256 -0.154 0.256 -0.154
CreativeIT SEMAINE 0.390 0.411 0.390 0.411 -0.154 0.256 -0.142 0.241

SEMAINE RECOLA CreativeIT 0.473 0.375 0.520 0.375 0.201 -0.110 0.219 -0.084
CreativeIT RECOLA 0.375 0.473 0.408 0.514 -0.110 0.201 -0.044 0.165

CreativeIT RECOLA SEMAINE 0.188 0.337 0.188 0.337 -0.029 -0.059 -0.029 -0.059
SEMAINE RECOLA 0.337 0.188 0.346 0.048 -0.059 -0.029 -0.031 -0.063

Table 2: Development set UAR results (%) of baseline pa-
per’s approaches with hyper-parameters optimized on the test
set (Benchmark) and their corresponding reproduced results by
our team (Reproduced)

Approach Benchmark Reproduced
OSFUN + SVM 56.50 57.20
OSBOAW + SVM 52.50 55.50
AuDeep + SVM 49.90 40.20
END2YOU (CNN+LSTM) 49.70 41.40

Table 3: Development set UAR (%) scores of baseline feature
sets modeled with proposed classifiers.

Feature KELM WKELM KPLS WKPLS
OSFUN 57.55 55.95 61.22 58.59
OSBOAW 53.62 47.14 56.34 52.12
AuDeep 44.57 41.69 37.50 49.10
OSFUN+OSBOAW 58.46 54.09 62.11 60.98

We next combined predictions of models trained on SEMAINE
for valence and CreativeIT for arousal and optimized the thresh-
olds on the development corpus. This resulted in lower test set
UAR of 45.8%. In the third submission, we again used SE-
MAINE models’ predictions but optimized the thresholds us-
ing the combined training and development corpora, obtaining a
test set UAR of 47.8%. This was combined with the predictions
of three within-corpus classifiers (KELM, WKELM and WK-
PLS), which are trained on feature level fusion of OSFUN and
OSBOAW . This fusion scheme boosted the development set UAR
to 75.9%, also improving the test set UAR to 59.3%. However,
this score remained below the test baseline UAR of 66.0%.

Table 4: Comparative performances (%) of LSTM based cross-
corpus predictions with thresholds optimized on the training set.

USoMS Training Set USoMS Val. Set

Source Dimension WAR UAR WAR UAR

CreativeIT Arousal 56.1 51.0 40.0 44.4
CreativeIT Valence 44.7 37.4 40.2 32.4
RECOLA Arousal 39.5 48.2 41.2 41.4
RECOLA Valence 44.9 40.9 37.2 31.7
SEMAINE Arousal 55.6 45.8 56.2 52.1
SEMAINE Valence 52.5 46.9 48.9 60.1

5. Discussion and Conclusions

In this work, we introduced an LSTM based method for cross-
corpus, dimensional-to-categorical acoustic affect recognition
and embedded it in a fusion framework with within-corpus
utterance level paralinguistic processing. The results of the
proposed method were found to outperform singleton within-
corpus suprasegmental feature based systems on the challenge
development set, however rendered a lower performance on the
test set. Moreover, when the proposed systems’ predictions are
combined with the components of the challenge baseline sys-
tem, the development set performance is observed to boost. The
final system is found to give lower performance compared to the
challenge test set baseline, which may be attributed to both the
mismatch of class distributions/ways of labeling the continuous
corpora and the fact that the challenge baseline is somewhat
over-optimized.

An important issue with three out of four baseline ap-
proaches (i.e. all but openSMILE functionals based) is that due
to their inherent stochasticity it is impossible to reproduce the
baseline features/results exactly. This is the case with not only
neural networks, such as END2YOU and auDeep approaches,
but also with BoAW representation as the LLDs are sampled
randomly and cluster centroids of K-Means are also initialized
randomly. A possible solution to this would be to share the
BoAW and auDeep features along with the baseline release or
to prefix a seed for random number generation.

An interesting result observed in cross-corpus analyses is
that although the target task was three-class valence recog-
nition, models trained on arousal dimension rendered cross-
corpus UAR performances that are significantly higher than
chance level. Moreover, models trained on RECOLA and Cre-
ativeIT with arousal had higher UAR on USoMS compared to
those trained with valence. This may be attributed to gener-
ally positive correlations of these affect primitives as well as the
fact that arousal can be more accurately modeled from speech
acoustics. In both cases, it opens new research avenues to use
combination of predicted arousal and valence as mid-level fea-
tures for cross-corpus tasks targeting valence related classes.
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