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Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder char-
acterized by a variety of motor symptoms. PD patients show
several motor deficits, including speech deficits, impaired hand-
writing, and gait disturbances. In this work we propose a
methodology to compute i-vectors extracted from three differ-
ent bio-signals: speech, handwriting, and gait. These i-vectors
are used to classify patients and healthy controls, and to evalu-
ate the neurological state of the patients. Speech i-vectors are
extracted from Mel-Frequency Cepstral Coefficients (MFCCs),
handwriting i-vectors are extracted from kinematic features, and
gait i-vectors are extracted from modified MFCCs computed
from inertial sensor signals. Two fusion strategies are tested:
concatenating the i-vectors of a subject to form a super-i-vector
with information from the three bio-signals and score pooling.
The super-i-vector fusion method leads to better classification
results (accuracy of 85%) with respect to the separate analysis
with each bio-signal.
Index Terms: Parkinson’s Disease, i-vectors, pathological
speech, handwriting processing, gait processing.

1. Introduction
Parkinson’s Disease (PD) is the second most common neurode-
generative disease worldwide after Alzheimer’s, and its inci-
dence and prevalence are rising [1]. PD is often associated with
its primary motor symptoms, which include tremor, akinesia,
bradykinesia, and postural instability [2]. These symptoms re-
sult in gait impairments and handwriting deficits. Additionally,
secondary motor symptoms include speech disorders such as
hypokinetic dysarthria. PD is a progressive disorder, that is,
symptoms get worse over time. All these problems lead to a
lower quality of life for the patients, hindering their communi-
cation skills and mobility. Additionally, they make burdensome
for the patient to attend medical checks and therapy appoint-
ments [3]. To diagnose assess the progression of the disease,
neurologists apply different tests to the patient. The most com-
mon is the Movement Disorder Society Unifified Parkinson’s
Disease Rating Scale (MDS-UPDRS). However, the tests are
subject to the expertise of the clinician, therefore their inter-
and intra-rater variability could be high.

In recent years, the scientific community has analyzed dif-
ferent bio-signals aiming to detect and evaluate the progres-
sion of the disease. The final goal is to provide neurologists
with methods to support their diagnosis objectively and pa-
tients with tools to improve their therapy and treatment. Hope-
fully, these automatic methods will improve the understand-
ing of the disease and lead to improved quality of life for the
patients [3]. Among the analyzed bio-signals, inertial signals
from gait, online handwriting signals, and speech recordings
are highlighted as non-intrusive. Regarding the assessment of
speech impairments of PD patients, in [4] the authors classi-

fied the speech of PD patients vs. healthy controls (HC) speak-
ers using the Gaussian Mixture Models-Universal Background
Model (GMM-UBM) approach and i-vector models reporting
classification accuracies up to 87%. Studies performed at our
lab also suggest that i-vectors can be used to model the changes
in speech due to PD: in [5] i-vectors extracted from features that
characterized different dimensions of speech were used to ob-
tain a Spearman’s correlation of up to 0.63 with the third part of
the MDS-UPDRS neurological evaluation score . Online hand-
writing signals were analyzed in [6]. The authors used kine-
matic and pressure features to characterize online handwriting
signals captured with a Wacom digitizer tablet. They classified
PD patients and age balanced HC, and reported an accuracy of
up to 81.3%. In [7] the authors performed a handwriting as-
sessment using a smart-phone application where the patients
draw a spiral computing several features: the kurtosis of the
speed stroke, the length of the spiral drawing curve, the area
of the spiral in each loop, the time of the drawing, among oth-
ers. The authors evaluated different items of the Unified Parkin-
son’s Disease Rating Scale (UPDRS) score related to the upper
limbs, and reported correlations ranging from 0.47 to 0.52 com-
bining handwriting features with finger-taping measures. In [8]
the authors proposed two novel interpretable features to assess
gait impairments in PD patients: The peak forward accelera-
tion in the loading phase and peak vertical acceleration around
heel-strike, which encodes the engagement in stride initiation
and the hardness of the impact at heel-strike, respectively. The
new features were correlated with the UPDRS-III score of 98
PD patients. The results indicate that the proposed features
correlate with the disease progression and the loss of postural
agility/stability of the patients.

Although there are several studies considering different bio-
signals to assess the motor impairments of PD patients, most of
these studies consider only one bio-signal (modality) at a time.
Multimodal analyses, i.e., considering information from differ-
ent sensors, have not been researched extensively [9]. In pre-
vious studies [10] we found that the combination of three bio-
signals (speech, handwriting and gait) can improve the results
of the automatic assessment of the motor capabilities of the pa-
tients relative to the performance when only one bio-signal is
considered. The results also improved the accuracy of classifi-
cation of PD patients vs. HC subjects.

In recent years the i-vector approach [11], which was ini-
tially conceived for speaker verification tasks, has become the
state of the art in many other speech analysis tasks, including
PD speech analysis. This approach has also been adapted to
perform biometric verification tasks using handwriting and gait
signals. In [12] the authors performed the identification of a per-
son from gait signals captured with a smart-phone, while online
handwritten signature verification was performed with i-vectors
in [13]. The results of these works suggest that i-vectors are
able to capture the traits of a person in different bio-signals.

Interspeech 2018
2-6 September 2018, Hyderabad

2349 10.21437/Interspeech.2018-2295

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/2295.html


This means, that the i-vectors could also capture the effects of
PD in handwriting and gait bio-signals. This study proposes to
test i-vectors extracted from gait, handwriting, and speech sig-
nals to perform automatic analysis of PD. Additionally, we pro-
pose two fusion methods to combine these i-vectors. The per-
formance of the proposed model is tested in two aspects: i) the
classification between PD patients and HC subjects, and ii) the
evaluation of the neurological state of the patients. In this case,
we consider the third section of the Movement Disorder Soci-
ety Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-
III) [14] to assess the neurological state of the patients. This
section evaluates the motor skills of the patient through differ-
ent exercises. The results indicate that the fusion of i-vectors
from different modalities improve the classificaton of PD vs.
HC subjects up to 6%.

The rest of this work is divided as follows: Section 2 de-
scribes the data considered in this study. Section 3 explains the
methodology followed in this study, including the steps to build
the multimodal i-vectors. Section 4 describes the experiments
and shows the results of this work. Finally, section 5 presents
some conclusions and future work.

2. Data
The experiments were performed considering data from the fol-
lowing subjects:

• 49 PD patients with average age 60 ± 10.0 years. Most
in early to mid-stages of the disease. MDS-UPDRS-III
scores are available for 39 of them.

• Elderly HC: 41 with average age 65.1± 10.8.

For each subject, speech, handwriting, and gait signals were
captured during the same recording session. In addition, signals
of 40 young HC (average age 24.3± 4.0) were used to increase
the amount of data available to train the Universal Background
Model and i-vector extractor. These young HC were not in-
cluded in any test group. All the subjects are Colombian Span-
ish native speakers.

During the recordings all the subjects followed the speech
protocol described in [15]. This study only considers the speech
signals corresponding to ten short sentences. The speech signals
have a sampling frequency of 16 kHz. Speech signals for 30 of
the patients were recorded with professional equipment under
controlled acoustic conditions by using an acoustically treated
box to isolate some of the acoustic noise. The rest of the pa-
tients and HC were recorded with a generic Logitech headset in
quiet places where possible. It should be noted that the acous-
tic conditions make this task more difficult. Gait signals were
captured using the eGait platform1 [16] which has two inertial
sensors (tri-axial accelerometers and gyroscopes). The sensors
are attached to the lateral heel of the shoes. The signals were
captured with a sampling frequency of 102 Hz. The tasks per-
formed by the subjects included a 20 meters walk with a stop
at 10 meters and a 40 meters walk stopping every 10 meters.
The same 30 patients mentioned before were recorded using
different shoes than the rest of the subjects2. The handwriting
signals were captured using a Wacom Cintiq 13-HD digitizing
tablet with a sampling frequency of 180 Hz. In this tablet the

1eGaIT - embedded Gait analysis using Intelligent Technology,
http://www.egait.de/

2These 30 patients were the first patients to be considered. For tech-
nical reasons we had to change some of the capture equipment between
recording sessions. We are aware this could influence the results. The
measures taken to minimize this influence are described in Section 4.

subject writes/draws over a screen which provides instant vi-
sual feedback of their strokes. The tablet captures the x, y, and
z positions, azimuth and altitude angles, and the pressure of the
pen on the tablet screen. The tasks included writing their name,
their ID, the numbers from 0 to 9, the alphabet, and spontate-
nous sentence, and drawing geometric shapes e.g., an Archime-
dian spiral, a cube, and the Rey-Osterrieth figure [17], among
others. Due to their education background not all patients could
perform the writing tasks.

3. Methods
The methodology followed in this work comprises four steps:
(1) features are extracted from the bio-signals, (2) the i-vectors
are extracted for the computed features, (3) i-vectors extracted
from each bio-signal are combined, and (4) the i-vector are used
to classify the PD vs. HC subjects, or to assess the neurological
state of the patients.
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Figure 1: Methodology for the i-vector analysis

3.1. Feature extraction

3.1.1. Speech Modeling

To characterize these signals, 20 MFCCs (including MFCC0)
and their first and second derivatives were extracted from
frames of 25 ms length with a time-shift of 10 ms. This is the
standard set of features used in the i-vector approach. They also
have been successfully used to model articulation in PD [18].

3.1.2. Handwriting Modeling

The raw signals captured with the tablet, and their first and sec-
ond derivatives, were used as kinematic features to characterize
the handwriting process. These constitute a set of 18 features.
The signals were scaled to be in a range of [0,1], except the
y-position which was scaled to keep a the same aspect ratio of
the table (16:9).This set of features is a subset of the kinematic
features proposed in [6].

3.1.3. Gait Modeling

As mentioned before, the inertial sensors include a triaxial (x, y,
and z) accelerometer and gyroscope attached to each foot, for a
total of 12 gait signals. Each of the gait signals is characterized
with the modified version of the MFCCs proposed in [12]. For
this case, 8 coefficients per signal were used to keep the num-
ber of features low. Frames of 0.32 s with an overlap of 50%
were used. This frame length was selected to obtain enough
frames for the i-vector modeling as limited amounts of data are
available.

3.2. i-vector approach

In the i-vector approach, a factor analysis model is used as a fea-
ture extractor [11]. A new low-dimensional vector space known
as the Total Variability space is defined. For speech signals this
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vector space models the inter- and intra-speaker variabilities as
well as channel effects. The inter-speaker variability carries the
information about traits of the speech of an individual, in this
case we hope to capture the effects due to the disease. On the
other hand, intra-speaker variability could provide insight on
the progression of the disease over time. Analysis beyond the
scope of this work is needed to provide similar interpretations
to the i-vectors extracted from handwriting and gait signals.

The factor analysis model is expressed by Equation 1,
where M is the GMM supervector for a given signal, where
m is the speaker and channel independent GMM supervector
(usually taken from a UBM), T is the Total Variability matrix,
and w is the i-vector, which is a standard normally distributed
latent variable.

M = m+Tw (1)

For this work the dimension of the i-vector, dimw, was cho-
sen based on the number of components in the UBM. M and
the dimension of the original feature vector, dimf , following
the relation dimw = log2(M)dimf .

Once the i-vectors are extracted, we process them in two
steps: (1) i-vectors of the different tasks of a given subject are
averaged to obtain one i-vector per subject, and (2) Principal
Component Analysis (PCA) is applied to the subject i-vectors
to perform a whitening transformation [19].

3.3. Super i-vectors

A multimodal super i-vector is formed by concatenating the i-
vectors from each bio-signal. This is expressed by Equation 2,
where H , G, and S are the dimensions of the handwriting, gait
and speech i-vectors.

wf =



wh

wg

ws




(H+G+S)×1

(2)

3.4. Classification

A soft margin Support Vector Machine (SVM) with Gaussian
kernel is used to classify PD vs. elderly HC subjects. This clas-
sifier was chosen as it has obtained good results when analyzing
PD bio-signals [20]. Two hyper-parameters need to be opti-
mized in this classifier: the margin cost C and the bandwidth
of the Gaussian kernel γ. Details of the optimization procedure
are given in the next section.

3.5. Evaluation of the neurological state

To perform evaluation of the neurological state of the patient
we correlate the MDS-UPDRS-III label with the average cosine
distance between the subject’s i-vector and a set of N reference
i-vectors. The average cosine distance for the j−th test subject
i-vector is given by Equation 3.

d(wtest,j) =
1

N

N∑

i=1

(
1− wtest,j ·wref,i

||wtest,j ||||wref,i||

)
(3)

The Spearman’s rank correlation coefficient is used to assess the
correlation between the average cosine distances of the patients
with their MDS-UPDRS-III labels. Three sets of reference i-
vectors were used in this case: i) young HC i-vectors, ii) elderly
HC i-vectors, iii) PD patients i-vectors.The reference sets will
be described in more detail in the next section.

A multimodal fused score is obtained by averaging the co-
sine distance of the i-vectors of each bio-signal. This is referred
to as Score fusion.

4. Experiments and results
4.1. Validation

A five-fold cross-validation scheme was implemented for the
classification experiment, i.e., 80% of the data are used to train
the models and the remaining 20% are considered to test the
system. The hyper-parameters are optimized by performing a
nested three-fold cross-validation over 80% training data. The
hyper-parameters that need to be optimized are the number of
Gaussians in the UBM, the number of components in PCA, and
the parameters of the SVM classifier (C, γ). To minimize pos-
sible bias due to the different microphones and shoes used to
capture the signals, the patients of each fold were balanced ac-
cording to this condition.

4.2. Experiments

For the classification task three experiments were performed:
(1) signals from PD, elderly HC, and young HC were used to
train the i-vector extractor, (2) the i-vector extractor was trained
using only the signals from young HC as these subjects are eas-
ier to find and enlist, and (3) the i-vector extractor was trained
with the signals from young HC and a small number of eldelry
HC. In all experiments only PD patients and elderly HC subjects
are considered in the test set. The young HC are not considered.
The results are given in terms of the the Area Under the ROC-
curve (AUC), and the accuracy (Acc.), sensitivity (Sens.), and
specificity (Spec.) of the classifier

4.2.1. Experiment 1

Table 1: Classification results PD vs. HC, experiment 1

Signal Acc. (%) AUC Sens. (%) Spec. (%)
Gait 76.9± 9.1 0.83 77.1± 11.5 76.8± 12.5
Handwriting 75.1± 3.7 0.82 79.3± 7.4 70.0± 17.0
Speech 79.4± 7.8 0.87 83.1± 15.2 75.0± 17.7
Super i-vector 85.0± 9.6 0.92 81.3± 12.4 89.6± 9.5

The results in Table 1 show that the best results are obtained
when considering the super-i-vector fusion method. This fusion
method also achieves better classification results than analyzing
the i-vectors of each bio-signal separately. This method spe-
cially improves the average specificity, that is, the capability of
the system to recognize HC from PD. The results also show that
speech is the bio-signal with better classification performance,
and probably the signal that contributes most information in the
fusion. This could be expected as the i-vector approach was
initially thought to analyze speech signals.

4.2.2. Experiment 2

Table 2: Classification results PD vs. HC, experiment 2

Signal Acc. (%) AUC Sens. (%) Spec. (%)
Gait 70.4± 5.5 0.70 66.9± 13.5 75.0± 22.4
Handwriting 74.9± 7.1 0.80 74.9± 18.1 75.0± 13.7
Speech 80.7± 9.0 0.88 83.6± 8.3 77.1± 21.4
Super i-vector 81.9± 6.2 0.89 83.8± 4.6 79.6± 9.8
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The results in Table 2 show that the classification perfor-
mance of gait signal decreases when the i-vector extractor is
only trained with young HC signals. In this case, the sensitivity
is highly affected, while the specificity only decreases slightly.
This result could be explained by the fact that gait problems are
usually more prominent in latter stages of the disease [21]. The
lower accuracy in gait signals also affects the results of the super
i-vectors which also show a lower performance compared to the
experiment 1. The other two signals in the fusion keep the clas-
sification accuracy, but the specificity is more affected than the
sensitivity. The classification results considering speech signals
were not affected. This means that robust models for speech can
be trained using only signals from young HC.

4.2.3. Experiment 3

Table 3: Classification results PD vs. HC, experiment 3

Signal Acc. (%) AUC Sens. (%) Spec. (%)
Gait 69.2± 5.3 0.77 65.3± 10.0 73.9± 14.8
Handwriting 71.8± 7.3 0.78 81.3± 12.4 60.0± 26.7
Speech 72.5± 7.5 0.83 87.3± 12.7 53.9± 12.3
Super i-vector 83.8± 9.3 0.90 79.3± 7.4 89.3± 13.2

The results in Table 3 show that training the extractor with
signals from old HC and young HC does not improve the classi-
fication results, moreover, in the case of handwriting and speech
the results are worse than in the previous experiments. How-
ever, the proposed fusion method was not affected. The results
of experiments 2 and 3 indicate that the Total Variability Matrix
is sensible to the data used to train it. A robust extractor needs
to be trained with both signals of PD patients and HC in order to
take into account the variability due to the disease. This means
that when analyzing PD bio-signals with the i-vector approach
is not enough to add more data. In order to obtain robust mod-
els a careful selection of the data added needs to be done, and
probably signals from PD patients are needed.

4.2.4. Neurological evaluation experiment

For the evaluation of the neurological state, the i-vector extrac-
tor was trained only with signals of young HC. The test set
for this experiment comprises the 39 patients for which MDS-
UPDRS-III scores are available. The YHC reference set is ob-
tained by extracting the i-vectors from signals of young HC,
however this reference could be biased, as these were the same
signals used to train the extractor, that is, these i-vectors com-
prise the same vector space as the rows of the Total Variabilty
Matrix. The OHC reference set comprises the i-vectors ex-
tracted from elder HC signals. Finally, the PD reference is ob-
tained from the i-vectors of the signals of the 10 patients not
included in the test set.

Table 4: Spearman’s correlation between the cosine distance
and the MDS-UPDRS-III

Signal ρ - YHC ref. ρ - EHC ref. ρ - PD ref.
Gait −0.14 −0.11 −0.25
Handwriting 0.20 −0.07 −0.18
Speech −0.14 0.30 −0.33
Super-i-vector 0.03 −0.08 −0.26
Score fusion 0.31 0.20 −0.41

The results in Table 4 show a negative correlation between

the PD reference average cosine distances and MDS-UPDRS-
III (last column) in all cases. This means that as disease pro-
gresses, the distance to an affected reference decreases. The
opposite could be said about the correlation between the aver-
age cosine distance for HC references, however, in most cases
these correlations are low or negative. This could indicate that
these references are not adequate for this task. The results also
show that the proposed super-i-vector fusion was not able to im-
prove the evaluation results. This may indicate that the super-
i-vectors do not behave like normal i-vectors. An additional
fusion method was proposed to try to improve the results. In
this method, referred to as score fusion, the average cosine dis-
tances from the three different bio-signals are averaged. The
score fusion method provides a slight improvement in terms of
the Spearman’s correlation.

5. Conclusion and future work
In this study, detection and evaluation of PD was performed us-
ing three different bio-signals. Speech signals were character-
ized using MFCCs, online handwriting signals with kinematic
features, and gait signals with modified MFCCs. Then, each of
these signals was modeled using the i-vector approach. Clas-
sification between PD and age balanced HC was done using a
SVM classifier. Finally, the average cosine distance to a ref-
erence set of i-vectors was correlated to the MDS-UPDRS-III
labels of patients.

The results for each individual bio-signal show that i-
vectors extracted from speech perform better in both analyses.
This result makes sense because the i-vector approach was ini-
tially proposed for speech analysis. The results from experi-
ments 2 and 3 show that just adding more data to train the i-
vector extractor does not always leads to better results. We
think that the results can be improved by choosing data from
different tasks (speech, gait and handwriting) such that contain
more variability. A fusion scheme based on concatenating the i-
vectors extracted from different bio-signals was proposed. The
resulting vector is called super-i-vector. This fusion method im-
proved the classification performance: however, it did not im-
prove the correlation with the neurological state of the patients.
Another fusion method was proposed for this correlation task.
It consisted of averaging the scores over the i-vectors of the
three bio-signals per patient. The method improved the corre-
lation with the neurological labels that the neurologist assigned
to each patient.

Future work we will refine the feature sets, especially those
that represented gait and handwriting, since the results were not
satisfactory, thus we think that the selected features did not cap-
ture the patient’s condition properly. On the other hand, since
the i-vector approach was initially developed for speech signals,
it might need to be adapted to model other bio-signals. Addi-
tionally, other fusion methods to improve the performance in
the neurological evaluation of the patient could be proposed. Fi-
nally, we are collecting bio-signals using smart-phones instead
of dedicated platforms.
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