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Abstract
We investigate the recently proposed Time-domain Audio Sep-
aration Network (TasNet) in the task of real-time single-
channel speech dereverberation. Unlike systems that take time-
frequency representation of the audio as input, TasNet learns an
adaptive front-end in replacement of the time-frequency rep-
resentation by a time-domain convolutional non-negative au-
toencoder. We show that by formulating the dereverberation
problem as a denoising problem where the direct path is sepa-
rated from the reverberations, a TasNet denoising autoencoder
can outperform a deep LSTM baseline on log-power magnitude
spectrogram input in both causal and non-causal settings. We
further show that adjusting the stride size in the convolutional
autoencoder helps both the dereverberation and separation per-
formance.
Index Terms: speech dereverberation, speech separation, time-
domain, deep learning

1. Introduction
Real-world speech communication often takes place in crowded
or reverberant conditions where the speech signal is corrupted
by other speakers, environmental noises, or room reverbera-
tions. A successful system in such conditions thus requires
robust speech separation or speech dereverberation function.
Moreover, in such applications where real-time processing is
necessary, the latency of the system remains an important lim-
iting issue.

In recent years, deep learning systems have shown to have
better generalization ability and higher performance in various
conditions for both separation and dereverberation [1, 2, 3, 4, 5,
6, 7, 8, 9]. In most of the systems, a time-frequency (T-F) rep-
resentation is calculated from the audio waveform as the input
by short-time Fourier transform (STFT). In speech separation
tasks, a general method is to estimate a T-F mask for each of
the speaker in the mixture. In dereverberation, the anechoic
T-F representation is typically estimated from the reverberant
signal. The reconstruction of the waveforms is then done by
inverse STFT. However, there are several issues with the us-
age of T-F representations. First, performance of STFT-based
systems is related to the choice of the window length in STFT,
which directly affects the frequency resolution as well as the
system latency. In many systems, a window size that is longer
than 32 ms is required to achieve a good performance [1, 2, 10].
This limits the use of such systems in applications where a very
short latency is required, such as hearing aids and telecommu-
nication devices. Additionally, most of the systems for sepa-
ration and dereverberation only modify the magnitude spectro-
gram or the mel-frequency cepstral coefficient (MFCC) while
the phase spectrogram remains unchanged [3, 5, 6]. This lim-
its the performance upper-bound due to the usage of the noisy
phase during inverse STFT. Although there are methods such as

phase-sensitive mask for separation [11] or complex ratio mask
and iterative reconstruction for dereverberation [12, 7], the per-
formance is still limited and model complexity might be much
higher.

Modeling the signals directly in time-domain may rem-
edy the issues mentioned above. A recently proposed neural
network, the Time-domain Audio Separation Network (TasNet
[4]), is a deep learning system that operates in the time-domain.
TasNet models the input waveform with a 1-D convolutional
encoder-decoder framework where the output of the encoder
forms a non-negative adaptive front-end (representation) to re-
place the STFT. The target sources are estimated by calculating
mask-like matrices that are applied to the non-negative repre-
sentation of the input, which is similar to the typical mask es-
timation process in STFT-based systems. Because all of the
operations in TasNet are in the time-domain, there is no upper-
bound performance due to the noisy phase spectrogram, and the
latency of the system can be controlled by the length of the 1-D
filters in the convolutional autoencoder. Comparing with STFT-
based systems, the latency of TasNet can be as low as 5ms [4],
which makes it possible for real-time low latency applications.

It was shown that TasNet outperformed the state-of-the-art
STFT-based systems on the separation task in both causal and
non-causal configurations [4]. However, whether TasNet is ef-
fective in the problem of single-channel dereverberation is un-
known. In this paper, we investigate the usage of TasNet as a
denoising autoencoder (DAE) in the problem of speech derever-
beration. We formulate the dereverberation problem as a sepa-
ration problem, where the reverberant speech is treated as the
summation of the direct path and the reverberant noise. A sim-
ilar mask estimation process is designed to extract the direct
path from the reverberant input. Based on the observation on
the dereverberation problem, we further show that by adding
overlap between the windows (i.e. adjusting the stride size in
the convolutional autoencoder), the performance of dereverber-
ation and separation can both be improved.

The rest of the paper is organized as follows. Section 2
describes the problem formulation of the dereverberation task.
Section 3 considers the TasNet architecture for dereverberation.
Section 4 provides the details about the experiments. Section 5
concludes the paper.

2. Problem Description
A reverberant speech signal is composed of the direct signal
x(d)(t) and the remaining reverberant noise x(e)(t)

x(t) = x(d)(t) + x(e)(t) (1)

In real-time applications, audio signals typically come in
streams or segments. At each time step, we assume that an au-
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dio stream with length of L samples is received




xk = x(t)

x
(d)
k = x(d)(t)

x
(e)
k = x(e)(t)

t ∈ [kH, kH + L), k = 1, . . . ,K (2)

where xk,x
(d)
k ,x

(e)
k ∈ R1×L and H denotes the hop size be-

tween streams. K stands for the total number of audio streams
and varies from utterance to utterance. We drop the notation k
where there is no ambiguity.

The aim of dereverberation is to estimate the direct signal
x(d) from x. Following the idea from the original TasNet, a
set of trainable basis signals B = [b1,b2, . . . ,bN ] ∈ RN×L is
used to represent each of the segments with a set of non-negative
weights through a deconvolutional operation

{
x = Deconv(w,B)

x(d) = Deconv(w(d),B)
(3)

where the weight vectors w,w(d) ∈ R1×N . With the non-
negativity constraint, a mask-like vector m(d) ∈ R1×N can be
estimated for w(d)

w(d) = w � (w(d) �w) (4)

:= w �m(d) (5)

where � and � denotes element-wise multiplication and divi-
sion. Therefore, the problem of estimating the direct path is
equivalent to estimating a mask-like vector which is applied to
a representation of the reverberant speech.

3. TasNet for Dereverberation

Figure 1: Time-domain Audio Separation Network (TasNet)
models the input signal in the time-domain using a convolu-
tional encoder-decoder framework. The output of the encoder
forms the non-negative representation for the input, and a mask
for the target direct path is learned from the separator and ap-
plied to the encoder output. The decoder then reconstructs the
waveform through a deconvolutional operation.

The TasNet architecture contains one 1-D convolutional
layer as the non-negative encoder and several recurrent lay-
ers for mask estimation, and one linear 1-D deconvolutional
layer as the decoder. The encoder output serves as an adaptive
front-end representation for the time-domain signal to replace
the STFT feature. The decoder inverts the convolutional oper-
ation in the encoder by performing deconvolution with a set of
trainable basis signals (filters) and reconstructs the waveforms.
The recurrent layers estimate the masks using the representation
generated by the encoder. Figure 1 shows the flowchart of the
system.

3.1. 1-D convolutional encoder

The encoder consists of a 1-D convolutional layer with ReLU
activation for the non-negativity constraint

w = ReLU(LN(x~U)) (6)

where U ∈ RN×L is the trainable parameter, x ∈ R1×L is
a segment of the input mixture, and N is the number of chan-
nels (i.e. the number of the filters). ~ denotes the convolution
operator. LN corresponds to the layer normalization operation
[13]. The layer normalization operation is applied here to en-
sure that the encoder is invariant to input rescaling, meaning that
changing the energy of the signal will not affect the separation
performance.

In [4], it was mentioned that a gated CNN architecture [14]
is helpful for the convergence speed and final performance.
However, we find empirically that with proper training, using
ReLU as the only activation function does not harm the perfor-
mance of the network.

3.2. Deep LSTM separation module

The separation module contains several stacked LSTM lay-
ers followed by a fully-connected layer for mask estimation.
The input to the separation module is the sequence of K in-
put weight vectors w1, . . .wK ∈ R1×N , and the output is the
mask-like vectors for the target sources. For dereverberation,
the output is only one mask m(d) corresponds to the direct path.
Sigmoid activation function is used in the fully-connected layer.

A layer normalization style operation is applied to the input
of the separation module in order to speed up and stabilize the
training process

w̄ =
g

σ
� (w − µ) + b (7)

µ =
1

N

N∑

j=1

wj σ =

√√√√ 1

N

N∑

j=1

(wj − µ)2 (8)

where parameters g ∈ R1×N and b ∈ R1×N are gain and bias
vectors that are jointly optimized with the network. We find this
important for the network to converge reliably.

In order to accelerate the training process and enhance the
gradient flow, an identity skip connection [15] is added between
every two LSTM layers. A linear fully-connected layer is ap-
plied to the input to the separation module for reshaping it to
the same size as the output of the second LSTM layer.

After the mask vector m(d) ∈ R1×N for the direct path of
each source is generated, the weight vector ŵ(d)

i ∈ R1×N for
each segment is calculated by multiplying m

(d)
i with the input

weight vector w, as in equation 5.

3.3. 1-D deconvolutional decoder

The decoder is a 1-D deconvolutional layer to invert the convo-
lution operation in the encoder for time-domain signal recon-
struction. The waveform for each signal in each segment is cal-
culated by the 1-D deconvolution between the weight vector and
a set of trainable 1-D filters B ∈ RN×L

x̂
(d)
i = Deconv(ŵ

(d)
i ,B) (9)

x̂i = Deconv(ŵi,B) (10)

The 1-D filters B are parameters in the deconvolutional
layer and are jointly optimized with all the other parts of the
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network. The entire waveforms are then obtained by concate-
nating all the segments. The reconstructions in the overlapped
parts in consecutive segments are summed up to form the final
output.

3.4. Training objective

In [4], it is reported that using scale-invariant source-to-noise
ratio (SI-SNR) as the objective led to better performance in the
separation task. However, SI-SNR leads to much slower con-
vergence and worse performance on the dereverberation task,
possibly due to the auto-correlated structure between the direct
path and the reverberant noise. Here, we use the mean-square
error (MSE) between the estimated direct path and the real di-
rect path, as well as the estimated recovered input and the noisy
input as the objective

L = MSE(x̂(d),x(d)) +MSE(x̂,x) (11)

Note that the second term in equation 11 is to ensure that w
correctly represent the input signal, which is necessary because
the direct path in dereverberation problem is part of the input.

4. Experiments
4.1. Dataset

4.1.1. Dereverberation

A simulated reverberant speech dataset is generated from the
Wall Street Journal (WSJ0) dataset with three different room
reverb characteristics. Table 1 shows the characteristics of the
rooms. One microphone is located at the center of the room.
The room impulse responses (RIRs) are generated with the im-
age method [16]. A training set of 20000 samples (30 hours
in total) and a validation set of 6000 samples (10 hours in to-
tal) are generated from randomly selected utterances from the
WSJ0 training set si tr s. A test set of 5000 samples (8 hours
in total) is generated from randomly selected speakers in WSJ0
si dt 05 and si et 05 datasets. The sample rate for all utterances
is set to 8kHz.

During the generation of the reverberant speech, a ran-
dom utterance is first drawn from the clean speech dataset. A
room and its corresponding T60 is also randomly selected. The
speaker is then randomly placed in the room with at least 0.5m
from the borders. The height of the speaker is restricted between
1m to 2m.

Table 1: Characteristics of different rooms for dereverberation
simulation.

Size (m) T60 (s)
Small 3 × 5 × 3 0.3

Medium 5 × 8 × 3 0.6
Large 8 × 11 × 3 0.9

4.1.2. Separation

For the separation task, we use the WSJ0-2mix dataset [1, 2,
10], which contains 30 hours of training and 10 hours of vali-
dation data. The mixtures are generated by randomly selecting
utterances from different speakers in WSJ0 training set si tr s,
and mixing them at random signal-to-noise ratios (SNR) be-
tween 0 dB and 5 dB. Five hours of evaluation set are generated
in the same way using utterances from 16 unseen speakers from

si dt 05 and si et 05 in the WSJ0 dataset. The sample rate is
also set to 8kHz.

4.2. Network configuration

Table 2: Network configurations for different tasks.

Task Causal (N , H , L) Separator

Dereverb X
(250, 40, 40)

4× 500 + 250
× 4× 250 + 250

Separate X
(500, 40, 40)

4× 1000 + 1000
× 4× 500 + 1000

The parameters of the system include the segment length L,
the hop sizeH , the number of basis signalsN , and the configu-
ration of the separator module. The parameters of the separator
include the number of (Bi-)LSTM layers, the number of hidden
units in each (Bi-)LSTM layer, and the number of hidden units
in the fully-connected layer. Table 2 shows the configuration of
networks for different tasks. Note that setting the hop size H
to be equal to the window size L means that there is no over-
lap between two consecutive segments. In Section 4.4 we will
discuss the effect of overlap in both tasks.

For the dereverberation task, we design another baseline
deep LSTM (DLSTM) DAE model with log-power magnitude
spectrogram input. The window size and hop size of STFT are
256 samples (32ms) and 64 samples (8ms), respectively. This
results in a 129-dimensional input feature. The DLSTM DAE
contains 4 (Bi-)LSTM layers with the same size as the separator
in TasNet, with a fully-connected layer of 129 hidden units for
estimating the log-power magnitude spectrogram of the direct
path. No activation function is applied in the fully-connected
layer. Identity skip connections are added between every two
(Bi-)LSTM layers the same way as in Section 3.2.

We also apply the curriculum training strategy [17] in a sim-
ilar fashion to [4]. We start training the network on 1 second-
long utterances for dereverberation and 0.5 second-long utter-
ances for separation, and continue training on 4 second-long ut-
terances afterward. For the DLSTM DAE model, we first train
on 100 frame-long utterances (0.8s) and continue on 400 frame-
long utterances (3.2s).

4.3. Evaluation metrics

For the dereverberation task, we evaluate the systems using the
perceptual evaluation of speech quality (PESQ) [18] and the
scale-invariant signal-to-noise ratio (SI-SNR) [1, 4]. For the
separation problem, we evaluated the systems with both SI-
SNR improvement (SI-SNRi) and SDR improvement (SDRi)
[19] metrics used in [1, 2, 10].

4.4. Experiment results

We first investigate the effect of stride size in the convolutional
autoencoder of TasNet on the performance. A hop size of H ≤
L corresponds to a stride size of L−H in the 1-D convolutional
and deconvolutional layers. Table 3 provide the effect of stride
on the performance of dereverberation task after having 50%
hop size (i.e. adding 50% overlap between segments). We find
that adding overlap between segments significantly helps the
performance.

We then compare TasNet DAE with DLSTM DAE base-
line on the dereverberation task. Table 4 presents the results
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Table 3: PESQ and SI-SNR (dB) for different hop size in TasNet
DAE.

Overlap Causal PESQ SI-SNR
0% X 2.13 1.52

50% X 2.24 2.20
0% × 2.43 2.61

50% × 2.55 3.38

of PESQ and SI-SNR of the two systems. We find that Tas-
Net DAE performs significantly better on SI-SNR but worse on
PESQ. This can be explained by the usage of the MSE-based
objective function which favors SNR more. Nevertheless, we
can see that a causal TasNet DAE can still outperform a non-
causal DLSTM DAE in terms of SI-SNR. This means that Tas-
Net DAE is able to learn a better mapping between the wave-
forms of the anechoic signals.

Table 5 compares the system latency in causal TasNet and
DLSTM DAE. Similar to [4], the system latency Ttot is ex-
pressed as the sum of the initial delay of the system Ti and the
processing time for a segment Tp. Ti is the length of the seg-
ment required to produce the first output, and Tp is estimated as
the average per-segment processing time across the entire test
set. Both models are loaded on a Titan X Pascal GPU before the
processing starts. We observe that the overall latency for TasNet
is significantly smaller than the DLSTM DAE, due to the fact
that TasNet decouples the window size and the frequency reso-
lution in STFT. This enables the TasNet model to be deployed
to real-time and low-latency applications.

Finally, we examine the effect of stride (H) on speech sepa-
ration task and compared with the other state-of-the-art systems.
During the training for TasNet with 50% overlap (TasNet-50%),
gradient clipping with maximum norm of 3 was applied to al-
leviate the gradient explosion problem. We find that this sig-
nificantly improves the performance. As shown in table 6, al-
though TasNet without overlap (TasNet-0%) already has com-
parable performance with other systems, TasNet with 50% over-
lap significantly outperforms all the other systems in both causal
and non-causal configurations. This performance boost further
proves the efficacy of TasNet in both online and offline settings
in comparison with STFT-based systems.

Table 4: PESQ and SI-SNR (dB) for TasNet DAE and DLSTM
DAE baseline.

Causal PESQ SI-SNR
Mixture – 2.23 -0.07

TasNet DAE X 2.24 2.20
DLSTM DAE X 2.42 0.79
TasNet DAE × 2.55 3.38

DLSTM DAE × 2.60 0.93

Table 5: Minimum latency (ms) of TasNet and DLSTM DAE in
dereverberation task.

Method Ti Tp Ttot

TasNet 5 0.11 5.11
DLSTM DAE 32 0.09 32.09

Table 6: SI-SNR (dB) and SDR (dB) improvements comparison
for different hop size in TasNet for separation.

Method Causal SI-SNRi SDRi
uPIT-LSTM [2] X – 7.0
TasNet-0% [4] X 7.9 8.2
TasNet-50% X 10.8 11.2
DPCL++ [1] × 10.8 –
DANet [10] × 10.5 –
ADANet [3] × 10.5 –

uPIT-BLSTM-ST [2] × – 10.0
cuPIT-Grid-RD [20] × – 10.2
CBLDNN-GAT[21] × – 11.0

Chimera++ [22] × 11.5 12.0
WA-MISI-5 [23] × 12.6 13.1
TasNet-0% [4] × 10.9 11.2
TasNet-50% × 13.2 13.6

5. Conclusion
In this paper, we investigated the performance of a recently pro-
posed neural network for speech separation, the time-domain
audio separation network (TasNet), on the task of speech dere-
verberation. We formulated the dereverberation problem as a
denoising problem where the direct path was separated from the
echoic noise. Experiments showed that TasNet outperformed a
deep LSTM baseline with spectrogram input, and adjusting the
stride size in the convolutional autoencoder further improved
the performance in both separation and dereverberation tasks.
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