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Abstract
This paper proposes Audio-Visual Voice Conversion (AVVC)
methods using Deep BottleNeck Features (DBNF) and Deep
Canonical Correlation Analysis (DCCA). DBNF has been
adopted in several speech applications to obtain better feature
representations. DCCA can generate much correlated features
in two views, and enhance features in one modality based on
another view. In addition, DCCA can make projections from
different views ideally to the same vector space. Firstly, in this
work, we enhance our conventional AVVC scheme by employ-
ing the DBNF technique in the visual modality. Secondly, we
apply the DCCA technology to DBNFs for new effective vi-
sual features. Thirdly, we build a cross-modal voice conversion
model available for both audio and visual DCCA features. In
order to clarify effectiveness of these frameworks, we carried
out subjective and objective evaluations and compared them
with conventional methods. Experimental results show that our
DBNF- and DCCA-based AVVC can successfully improve the
quality of converted speech waveforms.
Index Terms: statistical speech conversion, audio-visual pro-
cessing, deep learning, bottleneck feature, canonical component
analysis.

1. Introduction
Voice Conversion (VC) is a technique to convert speech wave-
forms pronounced by a source speaker into those of a target
speaker [1]. Considering to develop VC applications in real
environments, noise-robust techniques are essential, just like
speech recognition. Some of authors have already proposed an
Audio-Visual Speech Recognition (AVSR) method, exploiting a
visual modality i.e. lip images, in order to ensure acoustic noise
robustness [2, 3]. According to the success of AVSR, Audio-
Visual Voice Conversion (AVVC) methods employing the simi-
lar technique as AVSR have been proposed [4, 5, 6]. In addition,
there are some related works focusing on speech synthesis from
visual cues [7, 8]. We tested our approach [6] in noisy situa-
tions, and found the AV technology is also useful for VC.

Recently, deep learning has attracted attentions in speech
processing fields. In VC, the most simplest way to employ the
technology is to replace the statistical model into a Deep Neu-
ral Network (DNN); a deep-learning conversion model is made
in which its input layer corresponds to acoustic features of a
source speaker, and the output layer corresponds to features for
a target speaker. In this case, some networks such as deep be-
lief network and deep bidirectional long short-term memory are
chosen as a conversion model [9, 10]. Since these schemes re-
quire a huge training data set, there is another strategy to use
DNNs for feature extraction: Deep BottleNeck Features (DB-
NFs). Deep bottleneck features are proposed to extract much
more powerful acoustic features compared to conventional fea-
tures in speech processing such as speech recognition. A DNN
having a bottleneck layer, on which there are relatively fewer
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Figure 1: Audio-visual speech conversion.

perceptrons, is built using a large corpus. After model training,
output values from every units on the bottleneck layer are com-
posed into a new feature set. We have applied this technique to
speech recognition, lipreading and AVSR [2, 3]. In order to ob-
tain noise-robust acoustic DBNFs, speech data overlapped with
noise signals are used for DNN training. A visual DNN is also
made to obtain effective visual representations.

This paper firstly proposes a new AVVC method, using the
DBNF technique. Because applying the technique we can ob-
tain better visual features, the VC quality is expected to be im-
proved in noisy environments. In addition, we try to further
improve the method by employing Deep Canonical Correla-
tion Analysis (DCCA) [11]. DCCA is a non-linear extension of
CCA, which projects vectors obtained from two views to have
a higher correlation score. We utilize this technique to obtain
better feature representation. Finally, we also try to propose
a cross-modal VC technique based on the DCCA technology.
Since features from two modalities are ideally projected into
one single vector space, one common cross-modal conversion
model is now available for both audio and visual modalities. We
compare these methods with conventional VC schemes using
our AV data, by means of subjective and objective evaluation.

2. Voice Conversion
We briefly summarize the statistical audio-only VC method [1],
as well as our audio-visual VC method [6]. Because the AVVC
approach is based on the audio-only VC framework, we would
like to introduce the AVVC scheme depicted in Figure 1.

For an i-th pair (an audio-visual movie of source speaker
and a corresponding speech waveform of target speaker) in a
training data set, an audio feature ai,t and a visual feature vi,t

of source speaker (t is a frame index) are extracted (T1). An
audio-visual feature vector is then obtained by concatenating
these vectors frame by frame (T2):

xi,t = (ai,t
⊤ , vi,t

⊤)⊤ (1)
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This integration is skipped in the audio-only VC, that is:

xi,t = ai,t (2)

An acoustic feature of the target waveform, Mel CEPstral co-
efficients (MCEP) denoted by yi,t, is extracted (T3). A frame-
level time alignment Li between Xi = (xi,t) and Yi = (yi,t)
is subsequently obtained applying a dynamic time warping tech-
nique (T4). A cross-speaker Gaussian Mixture Model (GMM)
is finally built using all pairs (Xi, Yi) and corresponding labels
Li, in which a joint probability p(x, y) can be computed (T5).

When synthesizing speech signals of target speaker, audio
and visual features are generated (S1), followed by feature con-
catenation to obtain source features X = (xt), according to
Eq.(1) or Eq.(2) (S2). F0 and aperiodic data which are nec-
essary for speech synthesis are simultaneously obtained from
source speeches (S3). Applying the GMM, we can estimate au-
dio features of target speaker, denoted by Ŷ = (ŷt), according
to the following equation (S4):

ŷt = argmax
y

p(y|xt) (3)

Finally the voice conversion is done using Ŷ as well as the F0
and aperiodic parameters (S5):

3. Deep learning for AVVC
3.1. Deep bottleneck feature

Figure 2 depicts an architecture for DBNFs in [2, 3]. Before
training a DNN for DBNF extraction, Hidden Markov Models
(HMMs) are built in a conventional manner, in order to get state-
level time alignment data. The DNN having a bottleneck layer
on which there are relatively few perceptrons compared to the
other hidden ones, is then built using a large-scale training data.
Its input layer corresponds to training feature vectors, while the
output layer corresponds to the state-level time alignment. Af-
ter completing the training, all the layers beyond the bottleneck
layer are removed, so that the bottleneck layer could become a
new output layer. We can now apply the DNN to convert input
features into new feature vectors, called DBNFs.

In our previous works [2, 3], we exploited this DBNF
framework to generate effective audio and visual features for
AVSR. Not only clean but also noisy speech data were prepared
to give the DNN robustness against acoustic noises. We also
collected many kinds of basic visual features: appearance-based
cues such as Principal Component Analysis (PCA), Discrete Co-
sine Transform (DCT), Linear Discriminant Analysis (LDA) and
our original feature (GIF) [12], in addition to one shape-based
parameters having COORDinates of lip contours (COORD). We
then concatenate these features into an input vector (PDLGC) of
another DNN (see also Figure 4). We then adopted DBNFs, i.e.
ABNF and VBNF, to make audio-visual features.

3.2. Deep canonical correlation analysis

CCA is a technique to make projections from two modalities
so that the correlation between transformed vectors should be
maximized. The most conventional one is the linear CCA. Let
us denote vectors in two modalities by a and v, respectively.
CCA defines two matrices A and V that maximize the cross
correlation between Aa and Vv. Similar to PCA, CCA finds a
first canonical component corresponding to the first rows of A
and V . Second and following canonical components are subse-
quently obtained subject to existing components.

In order to obtain higher correlation, non-linear analyses
such as kernel-based CCA and deep-learning-based CCA have
been proposed [11, 13]. In this paper, we focus on the latter
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one, DCCA. Figure 3 illustrates a framework of DCCA. We as-
sume DNNs each having two hidden layers. In the first modal-
ity, one DNN is prepared which transforms a into a′ =f(a)
non-linearly. We have another DNN for the second modality to
convert v into v′=g(v). All the parameters appearing in f and
g are optimized such that a correlation score for training data is
maximized like CCA.

4. Proposed AVVCs
4.1. Method 1 — visual DBFs

We had chosen PCA as a visual feature in our previous AVVC
scheme [6]. In order to improve the visual feature set, in this
work, we employ the DBNF architecture in the visual modality.
Since it has been proven that exploiting visual DBNFs signifi-
cantly improves lipreading recognition accuracy (PCA: 42.52%
→ VBNF: 73.66%) [3], it is expected that adopting VBNF can
also enhance the quality of AVVC. MCEP and VBNF vectors are
finally concatenated frame by frame into an audio-visual feature
vector. Table 1 summarizes features and integration schemes
used in this paper.

4.2. Method 2 — DCCA-based visual features

We further try to improve visual features in AVVC by adjusting
VBNF. After computing audio and visual DBNFs, i.e. ABNF
and VBNF, DCCA is applied to get new features, i.e. ACCA and
VCCA respectively. In this method, VCCA is employed as a new
visual feature set while MCEP is still used, because of visual
feature comparison.
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Figure 4: Feature extraction in our AVVC.

Table 1: Audio and visual features/model in AVVC methods.

Feature AV integrationAudio Visual

Conv. [6] MCEP PCA feature concatenation
Method 1 MCEP VBNF feature concatenation
Method 2 MCEP VCCA feature concatenation
Method 3 ACCA VCCA cross-modal model

4.3. Method 3 — a cross-modal model for DCCAs

As an extension of the last method, we can choose ACCA instead
of MCEP, with composing ACCA and VCCA as an audio-visual
feature vector. Such the scheme may be able to improve the con-
version quality, on the other hand, we can adopt another strategy
for these features. DCCA generates non-linear transformations
for original audio and visual features so that projected features
could have high cross correlation. That means DCCA ideally
projects audio and visual vectors into one single space. In this
method, we train a GMM using VCCA feature vectors. Not only
VCCA but also ACCA vectors can be then converted to acoustic
features of target speaker using this cross-modal GMM.

In existing AVSR systems, an audio-visual balancing archi-
tecture is widely employed; for example, multi-stream HMMs
which can emphasize an audio or a visual modality according
to stream weight factors are often adopted. Since DCCA may
transform features in both modalities into the same vector space
as already described, a different and simple fusion technique is
chosen in this work. Let us denote ACCA and VCCA vectors
by a′ and v′ respectively. Here, a new feature vector c can be
obtained as:

c = λa′ + (1 − λ)v′ (4)
where λ is a linear combination parameter (0 ≤ λ ≤ 1).

5. Experiment
We carried out subjective and objective evaluations to clarify
effectiveness of proposed AVVC frameworks.

5.1. Experimental setup

5.1.1. Data

We chose CENSREC-1-AV [14] consisting of audio-visual
connected-digit sentences. To make pre-trained HMMs and

Table 2: DNN setup.

DBNF DCCA
Audio Visual Audio Visual

#
of

un
its

on
la

ye
r Input 429 2,112 40 40

Hidden 2,048 2,048 1,600 1,600
Bottleneck 40 40 — —
Output 179 179 40 40

Pr
e-

tr
ai

ni
ng Batch size 256 256 — —

Max epochs 10 10 — —
Learning rate 0.004 0.004 — —

Fi
ne

tu
ni

ng

Batch size 256 256 400 400
Max epochs 50 50 50 50
Learning rate 0.006 0.006 0.001 0.001

DNNs, we used all data in the CENSREC-1-AV training data
set including 3,234 utterances by 42 speakers. We randomly se-
lected four speakers as source speakers and extracted their sen-
tences, from the CENSREC-1-AV test data set. We then asked
four male subjects, as target speakers, to utter the same digit
sequences.

In order to make additional acoustic training data and to
evaluate VC methods in acoustically difficult environments, in-
put speeches of source speakers were contaminated by adding
several kinds of acoustic noises. We chose in-car noises [14]
for DNN training while we obtained various noises from [15]
for testing, at several Signal-to-Noise Ratios (SNRs).

5.1.2. HMM

We made HMMs for state-level time alignment. HMMs were
prepared according to [14]; each digit HMM had 16 states while
a silence HMM consisted of 3 states. There were thus 179 states
in total. In training, clean and noisy data were exploited [2].

5.1.3. DNN

Table 2 summarizes our DNN setup. We built DNNs for ABNF
and VBNF separately, as [2, 3], also shown in Figure 2; there
were five hidden layers, one of which was a bottleneck layer
having only 40 perceptrons. Each unit on the output layer cor-
responded to a pre-trained HMM state. We concatenated fea-
tures at neighbor frames as an input vector to these DNNs: a
429-dimensional vector for ABNF (MFCC features from current,
5 previous and 5 next frames) and a 2,112-dimensional vector
for VBNF (PDLGC coefficients × 11 frames).

Two DNNs for DCCA were also prepared as Figure 3. The
audio DNN received an ABNF vector followed by generating
a 40-dimensional output vector ACCA. There were two fully-
connected hidden layers in this DNN. The same architecture
was applied to the visual modality. Since these DNNs were
relatively shallow, only fine-tuning was conducted in this work.

5.1.4. Evaluation

In this paper, a Mel-Cepstrum Distortion (MCD) score was used
for objective evaluation. A small MCD score means that the
quality of generated speeches is successful. For subjective eval-
uation, Mean Opinion Score (MOS) was used. We also carried
out transcription test; we asked subjects to listen to converted
speeches and write down their transcriptions, followed by cal-
culating accuracy of the transcriptions.

5.2. Results for Method 1

We at first evaluated Method 1, using 14 types of noises from
[15] and white noise. Note that MCD scores of the conventional
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Table 3: Transcription accuracy at SNR=15dB, for audio-only,
conventional and proposed audio-visual VCs (Method 1).

Stationary In-crowd Impact

Audio-only (MCEP) 86% 96% 79%
AV (MCEP+PCA) 92% 97% 80%
AV (MCEP+VBNF) 93% 99% 92%

audio-only VC in clean condition and the visual-only VC using
PCA were 4.31dB and 5.02dB, respectively.

Figure 5 indicates mean MCD scores among all the noisy
conditions at different SNRs. Focusing on visual-only results
it is easily found that VBNF is better than PCA. Furthermore,
our AVVC scheme using VBNF got better speech quality com-
pared to the conventional audio-only method at all the SNRs.
We conducted the subjective evaluation at 15dB. We catego-
rized the noises into three classes “stationary,” “in-crowd” and
“impact.” Table 3 shows transcription test results given by six
subjects. Although no significant difference was observed in
MOS evaluation, in this test it is found that applying VBNF is
effective particularly against impact noises.

5.3. Results for Method 2

Next, we evaluated Method 2. Figure 5 also includes its re-
sults. In both visual-only and audio-visual conditions, we could
improve MCD scores compared to Method 1. Table 4 shows
results of the transcription test obtained from 10 subjects. In
the table, we can see that using VCCA significantly improved
the accuracy at 5dB. Finally Table 5 indicates MOS scores at
15dB and 5dB in the three noise kinds. Except the stationary
noise at 15dB, we could improve the scores from VBNF.

It is often observed that, even if one modality is only avail-
able for training, a unimodal processing in another modality can
be improved. Basically the audio modality is much more use-
ful to discriminate phonemes than the visual modality in ideal
environments. In DCCA, the audio information thus implicitly
refined visual feature extraction, resulting the better VC quality.

5.4. Results for Method 3

Finally we tested Method 3. In this evaluation we only adopted
two kinds of in-car noises at SNR=15, 10, 5 and 0dB. Based on
preliminary experiments, we set λ = 0.2.

Figure 6 shows MCD scores of the following VC schemes:
1. audio-only VC using ACCA
2. visual-only VC using VCCA
3. audio-visual VC using ACCA and VCCA
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Figure 6: MCD scores of audio-only, visual-only, audio-visual
and cross-modal VCs (Method 3) in in-car noises.

Table 4: Transcription accuracy for audio-visual VCs (Method
1 and Method 2).

SNR=15dB SNR=5dB

AV (MCEP+VBNF) 93% 77%
AV (MCEP+VCCA) 94% 92%

Table 5: MOS scores at SNR=15dB/5dB for audio-visual VCs
(Method 1 and Method 2).

Stationary In-crowd Impact

AV (MCEP+VBNF) 3.07/2.38 3.01/2.35 2.94/2.31
AV (MCEP+VCCA) 3.07/2.70 3.39/2.89 3.25/2.82

4. the cross-modal VC Method 3 utilizing the GMM
trained from VCCA for linear-combined features ob-
tained from ACCA and VCCA at λ = 0.2

As we expected the audio-visual scheme based on Method
2, using ACCA instead of MCEP seemed to work well. Fur-
thermore, it turns out that the cross-modal approach Method
3 can significantly improve the VC quality even in heavily
noisy environments. It is also remarkable that this cross-modal
VC achieved slightly better performance than audio-only and
visual-only VCs. This means such the audio-visual balancing
architecture is quite useful in AVVC, just like AVSR.

6. Conclusion
For audio-visual voice conversion, in this paper, at first we im-
proved visual features by employing the DBNF architecture.
We subsequently refined visual representations by introducing
the DCCA framework. By the aid of bottleneck network and au-
dio information, the AVVC quality could significantly increase
in noisy environments. We further proposed to use a cross-
modal AVVC model based on DCCA. Objective and subjective
experimental results indicate our approach is quite successful
compared to existing VC schemes.

Our future work includes evaluation of our AVVC perfor-
mance in visually difficult situations and in large-vocabulary
tasks, in addition to investigation of automatic optimization of
the balancing parameter.
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