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Abstract

Deep learning has been very successful on labeling tasks
such as image classification and neural network modeling, but
there has not yet been much work on using deep learning for
automatic personality recognition. In this study, we propose
two deep learning structures for the task of personality recog-
nition using acoustic-prosodic, psycholinguistic, and lexical
features, and present empirical results of several experimental
configurations, including a cross-corpus condition to evaluate
robustness. Our best models match or outperform state-of-the-
art on the well-known myPersonality corpus, and also set a new
state-of-the-art performance on the more difficult CXD corpus.

Index Terms: Personality recognition, Deception detection,
DNN, LSTM, Word Embedding

1. Introduction

Automatic personality recognition is useful for many computa-
tional applications, including recommendation systems, dating
websites, and adaptive dialogue systems, as a feature that can
both inform personalization and help predict useful information
such as job performance or academic outcomes.

Personality refers to individual differences in characteris-
tic patterns of thinking, feeling, and behaving [1]. A com-
monly used model of personality is the NEO-FFI five factor
model of personality traits, also known as the Big Five: Open-
ness to Experience (having wide interests, imaginative, insight-
ful), Conscientiousness (organized, thorough, a planner), Extro-
version (talkative, energetic, assertive), Agreeableness (sympa-
thetic, kind, affectionate), and Neuroticism (tense, moody, anx-
ious) [2]. These traits were originally identified by several re-
searchers working independently [3] and the model has been
employed to characterize personality in multiple cultures [4].

Most previous research on personality detection has used
personality scores assigned by annotators based solely on the
text or audio clip. While such annotations can be useful for
studying how personality is perceived, they have been shown
to correlate only weakly with scores derived from personality
tests completed by the subject themselves (“self-reported” la-
bels), and have moderate to weak internal consistency (as mea-
sured by Cronbach’s alpha) [5]. Predicting self-reported NEO-
FFI scores, as we do here, is a much more difficult task (since
the stranger ratings are based only on the speech or text sam-
ples, which necessarily contain all the information needed for
the prediction).

The main contribution of this paper is a multi-modal
deep learning model for personality prediction using acoustic-
prosodic features and word embeddings. We experimented with
a standard multi-layer perceptron (MLP) as well as a model that
uses an LSTM (long short term memory) layer to encode each
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instance’s word vectors for the final prediction. For the stan-
dard MLP approach, we further experiment with methods for
combining feature sets of different sizes and modalities.

For comparison with previous work, we report the perfor-
mance of each model on the myPersonality corpus [6], which
has only text data, as well as the CXD corpus [7, 8], which con-
tains audio and text. Additionally, we explore the ability of our
model to represent personality in general, rather than on a spe-
cific corpus, by testing the performance of each trained model
on its opposite corpus.

The remainder of this paper is structured as follows. In
Section 2, we review previous work. Description of the dataset
can be found in Section 3. In Section 4, we described feature set
and model detail. Section 5 present the experimental setup and
results from various models. Finally, We conclude and discuss
future research directions in Section 6.

2. Related Work

There have been numerous successful approaches to the au-
tomatic personality recognition in the literature, using various
combinations of acoustic-prosodic, lexical, and psycholinguis-
tic features [9, 10, 11, 12, 13, 14]. [10] used prosodic features
to detect personality from ten second audio clips labeled for
personality by human judges based on the audio clips alone.
[9] used lexical features to predict personality traits in student
essays. Features based on Linguistic Inquiry and Word Count
(LIWC) [11] psycholinguistic categories have been shown to
correlate with Big Five personality traits, both in writing sam-
ples [15] and in spoken dialogue [12]. [13] used acoustic-
prosodic, lexical, and psycholinguistic features to predict self-
reported personality labels in deceptive interviews. The results
in [14] predicted self and observer personality scores from es-
say and conversational data, using LIWC, psycholinguistic, and
prosodic feature sets. Their results indicate that observer re-
ports are easier to predict: their models predicted observer la-
bels with good accuracy but did not outperform the baseline for
self-reported labels.

Most approaches to personality prediction have used tra-
ditional machine learning algorithms such as Support Vector
Machine and Naive Bayes. Recently, several studies have ap-
plied deep learning, which has achieved groundbreaking results
in many areas, to the task of personality prediction.

[16] used convolutional filters to aggregate word vectors
into sentence vectors, and used those features together with
the features used by [14] in a multilayer perception (MLP)
to predict self-reported personality labels on a stream-of-
consciousness essay dataset [15], achieving an average of ap-
proximately 58% accuracy on the Big Five personality traits,
using different configurations to achieve the best results for each
trait.
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[17] used a multilayer perception on the myPersonality
dataset [6] with GloVe word embeddings [18]. They achieved
approximately 71% average accuracy on all traits, performing
as high as 79% on Openness and Neuroticism.

Finally, [19] built a classifier for personality recognition us-
ing a convolutional neural network (CNN) with bilingual word
embeddings, also on the myPersonality data, with approxi-
mately 66% average accuracy.

Our work is differentiated from previous work by the inclu-
sion of acoustic-prosodic features, and the proposal and eval-
uation of three architectures for combining features from dif-
ferent modalities. Furthermore, we predict personality labels
from much more challenging data: unlike the myPersonality
and essay datasets, the CXD dataset, described more fully in
Section 3, is spoken, task-oriented, and deceptive.

Omitting the acoustic-prosodic features, we evaluate our
models on the myPersonality dataset for the sake of direct com-
parison with previous work. We cannot directly compare our
accuracy, with respect to a binary classification, to previous
work on the CXD dataset, which predicted high/medium/low
labels [13, 20], but we trained an SVM for binary predictions
with the same set of features for comparison with that work.

3. Data

Two labeled personality datasets were used for our study. The
first dataset was collected by myPersonality project [6]. The
Facebook dataset contains 9917 status updates in raw text from
250 Facebook users. Gold standard Big Five personality la-
bels were obtained for each user using an 100-item long ver-
sion of the IPIP personality questionnaire. Both scores and
classes were included in the dataset, and classes have derived
from scores with a median split.

Table 1: User-level personality distribution of myPersonality
dataset

Value O C E A N
Yes 176 130 96 134 99
No 74 120 154 116 151

Table 2: Status-level personality distribution of myPersonality
dataset

Value (0] C E A N
Yes 7370 4556 4210 5268 3717
No 2547 5361 5707 4649 6200

The second dataset was collected by the Deception project
at Columbia University, and the collection and design of the
corpus analyzed here is described in more detail by [7, 21, 22].
It contains within-subject deceptive and non-deceptive English
speech, collected using a fake resume paradigm, from native
speakers of Standard American English (SAE) and Mandarin
Chinese (MC). There are approximately 125 hours of speech
in the corpus from 173 subject pairs and 346 individual speak-
ers. Big Five personality scores were obtained for each speaker
using the NEO-FFI personality inventory [2]. Classes were de-
rived by splitting scores at the median.

The unit of segmentation used here is the turn. Turn bound-
aries were extracted in the following manner: the manual ortho-
graphic transcription was force-aligned with the audio, and the
speech was segmented if there was a silence of more than 0.5
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Table 3: Status-level distribution of CXD dataset

Value O C E A N
Yes 16289 14593 15504 15653 14783
No 12886 14582 13671 13522 14392

seconds. In total, there are 29175 turn-level instances. The av-
erage duration of each instance is 9.03s, though there are quite a
few outliers. During training and testing, all turns from a single
speaker were contained within a single fold.

4. Methodology

4.1. Features

For our experiments, we use the feature sets described in [13]:
acoustic-prosodic low-level descriptor features (LLD); word
category features from LIWC (Linguistic Inquiry and Word
Count) [11]; and word scores for pleasantness, activation and
imagery from the Dictionary of Affect in Language (DAL) [23].
We also add two new feature sets based on word embeddings.

Low-Level Descriptor (LLD). The Low-Level Descrip-
tor (LLD) feature set contains approximately 384 acoustic-
prosodic features as described in the Interspeech 2009 COM-
PARE Challenge [24]. These are with extracted using the base-
line 2009 Challenge configuration. The Low-Level Descriptor
features include pitch (fundamental frequency), intensity (en-
ergy), spectral, cepstral (MFCC), duration, voice quality (jitter,
shimmer, and harmonics-to-noise ratio), spectral harmonicity,
and psychoacoustic spectral sharpness.

Linguistic Inquiry and Word Count (LIWC). We used
Linguistic Inquiry and Word Count (LIWC) [11] to extract the
lexical features. LIWC is a text analysis program that calculates
the degree to which people use different categories of words,
and can determine the degree any text uses positive or negative
emotions, self-references, causal words, and 70 other language
dimensions. We extracted a total of 130 LIWC features based
on the 64 LIWC categories: 64 features based upon the ratio
of words appearing in each LIWC categories over total word
count; 64 features based on the ratio of words appearing in each
LIWC categories over the total words appearing in any LIWC
category; the total number of words appearing in any LIWC
category; and the total word count.

Dictionary of Affect in Language (DAL). We used
Whissell’s Dictionary of Affect in Language (DAL) [23] to ex-
tract additional features. The DAL is a lexical analysis tool
which is used for analyzing emotive content of speech espe-
cially for pleasantness, activation and imagery. It lists approx-
imately 4500 English words, each with ratings for these three
categories in the DAL. These were obtained from multiple hu-
man judges. We extract 19 features derived from the DAL
scores for each word in each subject’s baseline interview tran-
script. From all words’ pleasantness, activation and imagery
scores, we calculated the mean, minimum, maximum, median,
standard deviation, and variance. We also added the number of
words in the transcript that appear in the DAL.

Word embeddings (WE). We use the Gensim library [25]
to extract two sets of word vector features using Google’s pre-
trained skip-gram vectors [26] and Stanford’s pre-trained GloVe
vectors [18]. In order to calculate the vector representation of a
turn, we extract a 300-dimensional word vector for each word
in the segment segment, and then average them to get a 300-
dimensional vector representing the entire turn segment.



The feature sets used here represent information from both
the acoustic and lexical signal, as well has the higher-level psy-
cholinguistic information represented by the LIWC and DAL
features. They also vary widely in size, from 19 features (DAL)
to 384 (LLD). We therefore experiment with several methods
for combining feature sets from different modalities, described
in more detail in Section 4.2.

4.2. Multilayer perceptron

Our first model is a multilayer perceptron (MLP) [27], a sim-
ple feed-forward network using the sigmoid activation function.
We use two different approaches to combine the feature sets.
First, we try an early-fusion approach, concatenating all
feature sets into a single input feature vector (Figure 1). The
network has five fully-connected layers in a bottleneck config-
uration: (2048, 1024, 512, 1024, 2048) neurons per layer.
Second, we try late fusion, feeding each feature set sepa-
rately to an individual MLP, and concatenate the output layers to
predict each personality traits (Figure 2). Networks with three
fully-connected layers of size (256, 128, 256) were used for the
DAL, Google WV and GloVe WV feature sets, and size (512,
256, 512) for LIWC and LLD. After the individual MLPs were
trained, the last fully-connected layers from each one were con-
catenated together and fed forward to an output layer with five
neurons, one for each trait. This approach balances the influ-
ence of each of the feature sets so that a large but possibly less
informative feature set does not overwhelm the other features.

Figure 1: Diagram of first MLP model. LLD was used only for
deception dataset

‘ LLD ‘ ‘ Liwc ‘ ‘ DAL

‘ ‘ WV (Google) ‘ WV (Glove) ‘

Concatenation

Figure 2: Diagram of second MLP model. LLD was used only
for deception dataset

DAL ‘ ‘ WV (Google)

‘ WV (Glove) ‘

Concatenation

In addition to the sigmoid activation function, we also ex-
perimented with ReLU and tanh, but did not see an increase
in performance. Tuning the learning rate improved the perfor-
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mance, and the final model used o = 0.001 with 100 epochs.
For the loss function, we used mean squared error.

4.3. Word Embedding and LSTM

In the models described above, we represented an instance’s
lexical content by averaging together its word vectors. This ap-
proach is quite common but naive. We additionally experiment
with feeding an instance’s word embeddings into an LSTM
(Long Short Term Memory) layer, well known for capturing
sequential information [28, 29], to learn an instance-level rep-
resentation.

Figure 3: Diagram of WE-LSTM model.
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We also updated off-the-shelf word embeddings to better
represent our data. We initialized a 300-dimensional word em-
bedding layer with the GloVe off-the-shelf embeddings. We
then trained the new model on our data. Since our corpora
are relatively small, this took advantage of the enormous cor-
pora that were used to train the off-the-shelf embeddings, and
adapted them to our data.

After training the word embedding layer, we feed 300-
dimensional word embeddings one at a time to the LSTM layer
to get instance-level representations. We set the maximum word
length of each corpus to 60, and zero padding is used if the
sentence length is less than 60 words. The LSTM layer’s out-
put, which represents the instance’s lexical content, is a 256-
dimensional vector.

A softmax function is then applied to the instance repre-
sentation, outputting a probability estimation of the binary clas-
sification of each personality trait. We set the learning rate to
0.001, and we use mean squared error loss function.

5. Result

Key results are presented in Tables 4 and 5. We tested our mod-
els on both the myPersonality and CXD corpora, as described
in Section 3. We compare our results to traditional machine
learning (ML) approaches as well as published state-of-the-art
on the myPersonality dataset. Traditional ML experiments were
done using 10-fold cross-validation, and the deep learning ex-
periments used a 90%/10% train/test split.

We tested various traditional ML algorithms. Like [17], we
found that LDA (linear discriminant analysis) performed best
on the myPersonality data, although our average accuracy was
61% compared to their published 63%. The discrepancy can
be explained by the fact that we omit a data pre-processing step
that they applied; furthermore, their published average accuracy
aggregates the best results for each personality trait across dif-
ferent experimental configurations. A decision tree had the best



Table 4: Key results: myPersonality

Model O C E A N Avg
LDA 73 .57 57 56 .61 .61
s-0-a' 79 59 719 56 719 1
MLP-1 76 .60 .61 .61 .65 .65
MLP-2 76 .62 61 .60 .65 .65
LSTM 76 62 .63 .60 .65 .65
MLP-LSTM .77 .63 .64 .61 .68 .67
1 state-of-the-art: [17].
Table 5: Key results: CXD
Model (0] C E A N Avg
Decisiontree .46 47 50 .56 .52 .50
MLP-1 S8 61 52 .64 55 .58
MLP-2 60 61 52 64 57 .59
MLP-1+2 60 61 59 .64 .61 .61
LSTM S59 59 51 .60 53 .56
MLP-LSTM .60 58 51 .64 .54 .57

performance for the CXD data, with average accuracy of only
50% — essentially random. This confirms that the CXD data
presents a significantly more difficult task.

In addition to the two MLP structures and LSTM struc-
ture described in Sections 4.2 and 4.3, we tested a model that
learned a linear combination of the predictions made by both
the MLP and LSTM to produce a final fused prediction. This
model performed best for the myPersonality data, with an av-
erage accuracy of 67%. This outperforms other recently pub-
lished results on the same data ([19], 65%). [17] reported 71%
accuracy. As with the LDA model, we believe the discrepancy
may be explained by the preprocessing and resampling steps not
implemented here. Another potential reason for underperform-
ing than their model on openness, extraversion and neuroticism
traits is that myPersonality dataset was highly unbalanced on
these three trait. Therefore, it is easy to perform better on those
three traits by predicting majority class. Instead, our model per-
forms better on the conscientiousness and agreeableness traits,
for which the majority baseline is lower than it is for the other
traits.

For the CXD corpus, the best model was the combination of
two MLP models, with 61% average accuracy, though the early
fusion MLP model and late fusion MLP model had individual
accuracies of 58% and 59%, respectively. This gives a 11%
absolute improvement over the best traditional ML model.

In order to assess whether these models are generalizable
across domains for personality recognition, we experiment with
training on one dataset and testing on another. For both datasets,
the MLPs performed best: 60% average accuracy for myPer-
sonality and 53% for CXD. Both these scores are significantly
worse than the best scores of the within-corpus condition, but
these accuracies still exceed (CXD) or match (myPersonality)
the performances of traditional ML models in the within-corpus
condition. We conclude that these models do not generalize
well, but can still capture useful information across corpora.

Literature on other tasks suggests that multi-task learning
(MTL) — using a single model to predict multiple labels — in-
creases performance. MTL is implemented naturally in neural
networks by including several nodes in the output layer, which
was done throughout this study. However, when we isolated the
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effect of MTL by training individual MLPs for each trait, we
did not see a significant drop in performance.

6. Conclusion and Future Work

In this paper, we present a deep learning approach to person-
ality recognition that outperforms traditional ML models and
recent deep learning models. We compared two network struc-
tures, MLP and WE-LSTM, and showed that a network based
on the combination of the two performs best on the myPerson-
ality corpus. The MLP, in contrast, generalizes better across
corpora, and also performs better on the CXD corpus, which
contains many out-of-vocabulary words from the speakers for
whom English is a second language. This points to the promise
of acoustic-prosodic features, which are more robust with re-
spect to language, and have not previously been used with a
deep neural network to predict personality. Finally, we show
that early- and late-fusion MLP models achieve comparable
performance, though the late-fusion MLP performs better for
Openness and Neuroticism in CXD.

In future work we will explore the fusion of these findings
to other dataset and other related problems, such as deception
detection. We also see the potential of extending our framework
to speech signal instead of text for personality recognition.
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