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Abstract
In this study, we present a computational framework to partici-
pate in the Self-Assessed Affect Sub-Challenge in the INTER-
SPEECH 2018 Computation Paralinguistics Challenge. The
goal of this sub-challenge is to classify the valence scores given
by the speaker themselves into three different levels, i.e., low,
medium, and high. We explore fusion of Bi-directional LSTM
with baseline SVM models to improve the recognition accuracy.
In specifics, we extract frame-level acoustic LLDs as input to
the BLSTM with a modified attention mechanism, and separate
SVMs are trained using the standard ComParE 16 baseline fea-
ture sets with minority class upsampling. These diverse predic-
tion results are then further fused using a decision-level score
fusion scheme to integrate all of the developed models. Our
proposed approach achieves a 62.94% and 67.04% unweighted
average recall (UAR), which is an 6.24% and 1.04% absolute
improvement over the best baseline provided by the challenge
organizer. We further provide a detailed comparison analysis
between different models.
Index Terms: computational paralinguistics, BLSTM, affect
recognition, attention mechanism

1. Introduction
Computing paralinguistic attributes from speech is becoming
more prevalent across a variety of tasks. Aside from focus-
ing solely on automatic speech recognition, modeling speech
signals to extract a variety of other relevant attributes of hu-
man states and traits (e.g., cold and snoring [1], Alzheimer dis-
ease [2, 3], and Autism diagnoses [4], etc.) has sparked many
technical research effort - many of these works show that these
higher-level human attributes could indeed be estimated from
speech signals. The potential application scenario is vast; in
fact, a series challenges have been proposed to tackle the is-
sues of robust recognition for different human states and traits.
The ComParE 2018 Challenge consists of four sub-challenges
as following: Atypical Affect Sub-Challenge, Self-Assessed
Affect Sub-Challenge, Crying Sub-Challenge and Heart Beats
Sub-Challenge. In this work, we present our algorithm in the
participation of Self-Assessed Affect Sub-Challenge.

Many of these real-life tasks suffer naturally from limited
data samples, and also the exact mechanism in the manifesta-
tion of these attributes in the speech signal is often complex
and intertwined with other unwanted factors, e.g., individual id-
iosyncratic factors, environmental noise, other human attributes
and traits, etc. In this work, we focus on affect recognition. Par-
ticularly, these are self-assessed affect states (instead of conven-
tionally perceptual-based affect states recognition). In scenar-
ios of mental illness such as depression, the patient’s emotion

would influence the outcome throughout the therapy process or
the morbidity of the illness. If the degradation of the patient’s
emotion well-being continue to worsen, the patients may even
lose the ability to do anything in their daily life. Research has
indicated that if a patient’s self-assessed affect states improves
with therapy, it indeed could create a substantial impact in im-
proving his/her quality of life [5, 6] .

While being an important health indicator, in practice, most
of these people tend not to self assess and disclose their own
affective states. The ability to automatically sense and detect
these individuals’ self-assessed valence states using unobtru-
sive and easily-obtainable behavior signals, such as speech and
facial expressions, is becoming more and more important, es-
pecially in the health-related applications.. In this work, we
present a technical framework in fusing various approaches to
achieve robust self-assessed valence attributes recognition from
speech. In specifics, we utilize two different types of model:
time-series model and static model. The static model is ob-
tained by training SVM classifier using the ComParE 16 fea-
ture set with functional encoding (6373 dimensional features).
In order to further improve the recall accuracy on the minority
class (low), we also train static SVM using ComParE 16 feature
set with minority class upsampling.

In terms of the time-series model, we first compute the
low-level descriptors part of the ComParE 16 feature set (130
dimensions per frame). We utilize the Bi-directional LSTM
as our model, which captures the forward and backward time-
dependent acoustic information, to perform affect recognition.
We also include the use of attention mechanism together with
BLSTM, and we modify the conventional structure of atten-
tion weights by inserting a dense layer (fully-connected layer)
in the computation of the attention weights for each time step
of BLSTM. This additional non-linear transformation of dense
layer helps in improving the recognition rates. Finally, the prob-
ability outputted obtained from each of these models are aver-
aged to perform the final fused recognition. Overall, our pro-
posed approach achieves a 62.94% and 67.04% unweighted av-
erage recall (UAR) in this three class recognition task, which is
an 6.24% and 1.04% absolute improvement over the best base-
line provided by the challenge organizer in the development and
the blind test, respectively.

The rest of this paper is organized as follows. In section 2,
we will elaborate the methods used in this work. In section 3,
we will present the experimental results and discussions. In the
last section, we conclude with future works.

2. Methodology
There are multiple components in our proposed approach. We
will describe each in the following section.
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Figure 1: The complete schematic of our framework: upsampling minority class in our database, training both time-series model
(BLSTM with modified attention mechanism) and a static model (SVM with ComParE 16 features), and finally integrating diverse
models in a decision-level fusion scheme

2.1. BLSTM with Modified Attention Mechanism

2.1.1. Bi-directional LSTM

Long Short-Term Memory (LSTM) Neural Network is first pro-
posed by Hochreiter et al. [7]. LSTM preserves long term con-
textual information from data inputs in its hidden state. LSTM
is an improvement over recurrent neural network (RNN) by in-
troducing three control gates: input gate, output gate, and forget
gate controlling write, read and reset operations for the hidden
cells. This helps eliminate the gradient explosion and vanish-
ing gradient problems for RNN. Conventional forward LSTM
is uni-directional, i.e., the information can only flow from the
past to the future due to the forward propagation of the network
structure. Bidirectional LSTM (BLSTM) networks is an im-
provement over standard forward LSTM model that is capable
of operating a sequence of features in both forward and back-
ward directions.

The original LSTM state:

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

where σ is the logistic sigmoid function, and i, f , o and c are
input gate, forget gate, output gate and cell state.

The Bidirectional LSTM state:

hi = [
−→
hi ⊕

←−
hi ]

Using the combined hidden states allows us to preserve infor-
mation from both past and future information at any given time
step. This particular methodology has been shown to be useful
for modeling tasks involving sequence modeling [8]. Another
modification to LSTM is Gated Recurrent Unit (GRU) [9]. Sim-
ilar to LSTM, GRU aims at tracking long-term dependencies ef-
fectively to prevent the vanishing/exploding gradient problems.
The key difference is that GRU uses only two gates (reset and
update gates). The relatively simpler structure of GRU help
achieve faster training; however, the trade-off is that GRU re-
members only shorter sequences in tasks requiring modeling
long-distance relations.

2.1.2. Modified Attention Mechanism

Attention mechanism is a widely used in sequence based
encoder-decoder model. Due to the fixed length input vector

to the encoder, the encoder-decoder architecture has superior
performance on short sequences but not the long ones. As the
sequence grows longer, the information contained inside often
becomes more complex where a fixed length input vector can
no longer support. A simple encoder model results in learning
an unreliable representation for such long sequence, leading to
poor decoder output. Attention mechanism helps mitigate such
an issue by applying weights on the intermediate outputs from
each step [10]; in other words, the outputs are generated under
a selection mechanism from inputs.

In this work, we also apply an attention mechanism in
the building of our time-series BLSTM model. Specifically,
the time pooling technique applied to our BLSTM model is
performed by computing weighted sum over time [11]. The
standard method to use attention mechanism for BLSTM is to
choose a simple logistic-regression-like weighted sum as the
pooling layer. This weighted sum is the inner product com-
puted between the frame-wise outputs of the BLSTM, yt, and
weights u being a vector of parameters as in an attention model.
To keep the weight summation as unity, we apply softmax func-
tion to the inner product.

αt =
exp(uT yt)∑
exp(uT yτ )

After obtaining the weights, we can calculate the weighted sum
over time to get the hidden representation to integrate attention
mechanism in our BLSTM.

z =
∑

αtyt

In our approach, we modify this attention mechanism by
adding a fully-connected layer in the computation of attention,
i.e., instead of directly computing dot product between feature
output and the label, we enhance the modeling power of atten-
tion weights by introducing the use of a more sophisticated non-
linear transformation (see Figure 1 for its network structure).
Finally, the newly weighted hidden representation (with modi-
fied attention weights, α′t), z′, is later fed into another softmax
dense layer to compute the final probability of each class. The
entire network is jointly optimized over these modules.

α′t = G(wTαt + b)

z′ =
∑

α′tyt
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Table 1: A summary of the experiment results for the various model structure, Up-Samp means up-sampling the minority class samples,
Aug. means general Data augmentation. The accuracy presented is evaluated on the development set with metric of UAR

Baseline Model 1 Up-Samp Data Aug. Model 2 Model 3 Model 4 Model 5 Model 6

Low Recall 37.97 24.05 54.43 18.98 29.11 18.98 53.16 19.98 29.11
Medium Recall 60.32 74.19 51.29 67.09 59.67 65.80 72.58 51.93 45.16

High Recall 71.10 89.51 69.97 77.05 64.87 62.88 58.38 53.54 73.37
Average Recall 56.50 64.24 57.48 54.77 51.22 49.22 61.50 48.27 49.21

where w, b,Gmeans the weight, bias and activation function of
softmax respectively.

2.2. Up-Sampling

In the Self-Assessed Affect database, the imbalance of class
distribution negatively impacts the recognition accuracy. Re-
sampling is a method to alleviate this problem by balancing
class distribution [12]. There are usually two different meth-
ods in resampling: up-sampling or down-sampling. Since the
database only includes a limited number of utterances, down-
sampling while efficient woud result in a loss of modeling
power in our models. In our approach, we choose to directly
up-sampling (duplicating data samples) the minority class in the
database.

2.3. Decision Score Fusion

In order to combine various models to obtain a better prediction,
we use confidence-based decision-level method, which is sim-
ilar to decision score fusion to generate our final results [13].
The confidence score from the time-series model is obtained
from softmax layer, and the estimated probabilities from the
SVM classifications of the static model is used as the confi-
dence score. These confidence scores, i.e., one for each class,
predicted from multiple models are then further summed up to-
gether. The class with the highest confidence sum is our final
prediction for each instance.

3. Experimental Results and Discussions
3.1. Experimental Setup

We extract standard ComParE features set as our low level de-
scriptors every 10 msec. These low-level descriptors are used in
the BLSTM model, which consisting 130 dimensions. This fea-
ture set includes voicing, energy, spectral related features and
their derivatives [14]. The functionals of these LLDs are re-
garded as the static acoustic representation for SVM model, and
the learned output from attention BLSTM with the LLDs as in-
puts are the time-series model.

The architectures of our BLSTM models are: a bidirec-
tional LSTM layer with 64 cells (32 for each direction) followed
by a fully connected layer with 64 nodes. The activation func-
tion is ReLU, and 50% of dropout [15] is utilized to prevent
over-fitting, which is applied to the fully-connected layer. The
parameters of BLSTM models are optimized using learning rate
of 0.0005, batch size as 256 and gradient clipping as 1 to limit
the magnitude of the gradient during training process. We con-
duct and compare our recognition results with the following list
of models, and all of the evaluation results are computed on the
development set using the metric of unweighted average recall
(UAR):

• Model 1 : SVM

• Mdoel 2 : BLSTM method with Attention

• Model 3 : B-GRU method with Attention

• Model 4 : BLSTM + Modified Attention

• Model 5 : Input Fc + BLSTM + Attention

• Model 6 : Input Fc + BLSTM + Modified Attention

The Input Fc means that the inputted low-level descriptors are
passed though a fully-connected layer before feeding it into the
BLSTM training.

3.2. Experimental Results

Table 1 summarizes the performances of each model. In short,
two classification models are used in our work, which is SVM
and BLSTM. We observe that SVM is better at the medium and
high class recall but performs poorly on the low class. Up-
sampling data when classified using SVM helps improve the
recall rate on low. The BLSTM method, on the other hand, per-
forms well on low and medium class but not on high class.

Due to the difference in the these modeling characteristics,
we propose the fusion models of static and time-series model.
The final fusion model used, determined empirically as:

• Fusion : Model 1 + Up-sampled Model 1 + Model 4

After fusing these three models (SVM, SVM-with-
Upsample, BLSTM-Modified-Attention), we obtain the best
recognition rates. The confusion matrix of this model on the de-
velopment set is shown in Figure 2. In summary, our best fused
model obtains a 62.94% and 67.04% unweighted average recall
(UAR) in the three-class recognition tasks of Self-Assessed Af-
fect task(as shown in Table 2). We obtain an 6.24% and 1.04%
absolute improvement over the best baseline provided by the
organizer.

3.3. Model Comparison and Analysis

In this section, we provides various comparison between differ-
ent models used in our work.

3.3.1. Model 1 v.s. Baseline

The Baseline model uses ComParE 2016 functional features
to train a linear SVM model. The imbalance class distribu-
tion in this sub-challenge leads to worse classification on mi-
nority class (low). From Table 1, we observe an increased

Table 2: Comparison between baseline model and our best
fused model (Model 1 + Up-sampled Model 1 + Model 4)

Baseline Our best fused model

Dev UAR 56.7% 62.94%
Test UAR 66.0% 67.04%
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Figure 2: Confusion Matrix of the Best Fused Model on the
Development Set

improvement for UAR of class Low (24.05% to 54.43%) by
up-sampling method. However, the UAR scores of class high
and medium drop slightly compared with the original method
without the up-sampling method. Note that there is a trade-
off between low and medium/high performance. Finally, data-
augmentation means to generate data samples (not specific to a
particular class) by corrupting original data samples with Gaus-
sian noise. This methodology introduces more noises into our
dataset and effectively decrease the recognition accuracy.

3.3.2. Model 2 v.s. Model 3

We further compare the performance between bi-directional
GRU and bi-directional LSTM with a standard attention mech-
anism in each model. While the GRU cells show faster con-
vergence rate during training process, the model with BLSTM
cells obtains 2% to 3% higher UAR in average compared to bi-
directional LSTM. The bidirectional LSTM with an attention
layer achieves not only a high UAR of 61.5% but also shows
better performance in both low and medium class recall rates.

3.3.3. Extension of Fully-Connected Layer

The effect of using additional fully-connected layer in our
recognition architecture is also analyzed.

• Model 2 v.s. Model 4

The use of dense layer in the computation of attention
weights brings about 5% to 8% improvements in the UAR when
comparing BLSTM using modified attention versus BLSTM us-
ing standard attention mechanism.

• Model 2 v.s. Model 5

In this comparison, we examine the difference of recogni-
tion rates obtained by placing the fully-connected layer in the
attention weight computation or right after the input LLDs be-
fore feeding them into BLSTM. Model 5 shows an decrease
in the recall rate in the low class around 10%, which indicates
that the fully-connected layer should be placed in the attention
mechanism not directly at the input space.

• Model 5 v.s. Model 6

By comparing between Model 5 and 6, we see that by
adding additional dense layer is indeed beneficial in obtaining
the higher recognition rates. Although, in general, these two
models do not perform well due to the initial dense layer ap-
plied to the inputs before feeding into the BLSTM.

4. Conclusions and Future Works
In this work, we present our recognition framework in the par-
ticipation of the Self-Assessed Affect Challenge. Our frame-
work is composed of two parts: a standard utterance level
baseline ComParE 16 features with SVM trained on original
database and up-sampled database, and a BLSTM model with
a novel modified attention mechanism. In order to alleviate
the issue of data imbalance, we employ a straightforward up-
sampling technique. This framework achieves an improved
recognition rates for both the development set and the blind
testing set. The introduction of modified attention mechanism,
i.e., adding a fully-connected layer in the computation of atten-
tion weights, is beneficial in improving utilizing sequence based
model in affect recognition from speech.

In our future work, we will continue to investigate advanced
methods in integrating static-dynamic acoustic representation
and learning model for complex human states and trait recog-
nition. Since many of these higher-level internal states and
traits are often complexly manifested in the recorded behavior
signals, additional technical endeavor is required develop au-
tomatic system in consistently and reliably tracking these at-
tributes. The continuous advancement in computational par-
alinguistics (e.g., complex affective phenomenon recognition)
will further help create a tangible impact, especially relevant
on applications domains of affective disorders and other related
mental health.

5. References
[1] B. Schuller, S. Steidl, A. Batliner, E. Bergelson, J. Krajewski,

C. Janott, A. Amatuni, M. Casillas, A. Seidl, M. Soderstrom et al.,
“The interspeech 2017 computational paralinguistics challenge:
Addressee, cold & snoring,” in Computational Paralinguistics
Challenge (ComParE), Interspeech 2017, 2017, pp. 3442–3446.

[2] J. Drapeau, N. Gosselin, L. Gagnon, I. Peretz, and D. Lorrain,
“Emotional recognition from face, voice, and music in dementia
of the alzheimer type,” Annals of the New York Academy of Sci-
ences, vol. 1169, no. 1, pp. 342–345, 2009.

[3] G. A. Gates, A. Beiser, T. S. Rees, R. B. D’agostino, and P. A.
Wolf, “Central auditory dysfunction may precede the onset of
clinical dementia in people with probable alzheimer’s disease,”
Journal of the American Geriatrics Society, vol. 50, no. 3, pp.
482–488, 2002.

[4] J. I. Alcántara, E. J. Weisblatt, B. C. Moore, and P. F. Bolton,
“Speech-in-noise perception in high-functioning individuals with
autism or asperger’s syndrome,” Journal of Child Psychology and
Psychiatry, vol. 45, no. 6, pp. 1107–1114, 2004.

[5] S. K. Mittal, L. Ahern, E. Flaster, J. K. Maesaka, and S. Fishbane,
“Self-assessed physical and mental function of haemodialysis pa-
tients,” Nephrology Dialysis Transplantation, vol. 16, no. 7, pp.
1387–1394, 2001.

[6] Y. Benyamini, E. L. Idler, H. Leventhal, and E. A. Leventhal,
“Positive affect and function as influences on self-assessments of
health: Expanding our view beyond illness and disability,” The
Journals of Gerontology Series B: Psychological Sciences and So-
cial Sciences, vol. 55, no. 2, pp. P107–P116, 2000.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

539



[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[11] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech
emotion recognition using recurrent neural networks with local
attention,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, pp. 2227–
2231.

[12] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9,
pp. 1263–1284, 2009.

[13] A. Sinha, H. Chen, D. Danu, T. Kirubarajan, and M. Farooq, “Es-
timation and decision fusion: A survey,” Neurocomputing, vol. 71,
no. 13-15, pp. 2650–2656, 2008.

[14] F. Weninger, F. Eyben, B. W. Schuller, M. Mortillaro, and K. R.
Scherer, “On the acoustics of emotion in audio: what speech, mu-
sic, and sound have in common,” Frontiers in psychology, vol. 4,
p. 292, 2013.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929–1958, 2014.

540


