Interspeech 2018
2-6 September 2018, Hyderabad

Dysarthric Speech Recognition Using Convolutional LSTM Neural Network

Myungjong Kim*, Beiming Cao', Kwanghoon An', Jun Wang'?

!Speech Disorders & Technology Lab, Department of Bioengineering
2Callier Center for Communication Disorders, University of Texas at Dallas, United States

{myungjong.kim, beiming.cao, kwanghoon.an, wangjun}@utdallas.edu

Abstract

Dysarthria is a motor speech disorder that impedes the phys-
ical production of speech. Speech in patients with dysarthria
is generally characterized by poor articulation, breathy voice,
and monotonic intonation. Therefore, modeling the spectral and
temporal characteristics of dysarthric speech is critical for better
performance in dysarthric speech recognition. Convolutional
long short-term memory recurrent neural networks (CLSTM-
RNNs) have recently successfully been used in normal speech
recognition, but have rarely been used in dysarthric speech
recognition. We hypothesized CLSTM-RNNSs have the poten-
tial to capture the distinct characteristics of dysarthric speech,
taking advantage of convolutional neural networks (CNNs) for
extracting effective local features and LSTM-RNNs for model-
ing temporal dependencies of the features. In this paper, we in-
vestigate the use of CLSTM-RNNSs for dysarthric speech recog-
nition. Experimental evaluation on a database collected from
nine dysarthric patients showed that our approach provides sub-
stantial improvement over both standard CNN and LSTM-RNN
based speech recognizers.

Index Terms: Dysarthria, convolutional neural network, long
short-term memory recurrent neural network (LSTM-RNN),
speech recognition

1. Introduction

Individuals with dysarthria, a neurological motor speech disor-
der, have trouble controlling their motor subsystems including
respiration, phonation, resonance, articulation, and prosody [1].
Speech in patients with dysarthria is generally characterized by
poor articulation, breathy voice, and monotonic intonation [1].
Therefore, standard automatic speech recognition (ASR) meth-
ods for the general public typically do not perform well for pa-
tients with dysarthria.

Related work on the recognition of dysarthric speech has
been mostly focused on acoustic modeling to capture the acous-
tic cues of dysarthric speech. A variety of acoustic models
such as Gaussian mixture model (GMM)-hidden Markov mod-
els (HMMs), support vector machine (SVM), and artificial neu-
ral networks were studied [2-4]. Also, deep neural network
(DNN)-HMM based acoustic models were widely applied to
dysarthric speech recognition [5, 6].

Convolutional neural networks (CNNs) have been sucess-
fully applied to automatic speech recognition due to the abil-
ity of extracting local features through convolution and pool-
ing operations [7]. There are several types of CNNs, includ-
ing frequency-domain CNNs (F-CNNs), time-domain CNNs
(T-CNNs), and time-frequency CNNs (TF-CNNs). CNNs have
been demonstrated effective in extracting useful features in
spectral, temporal, and spectro-temporal domains that are ro-
bust to small variations by using convolution and pooling along
the frequency axis, the time axis, and the time-frequency region,

respectively. These models were successfully applied to speech
recognition applications [8—10]. In particular, TF-CNN based
bottleneck features were used for dysarthric speech recognition
and the features were better than standard mel-frequency cep-
stral coefficients on GMM-HMM based ASR systems [11]. Re-
cently, parallel TF-CNNs (PTF-CNNs), where separate F-CNN
and T-CNN are combined with fully connected layers, were in-
troduced for noise robust speech recognition [12].

Long short-term memory recurrent neural networks
(LSTM-RNNS) can capture long-range temporal dependencies
by overcoming the vanishing gradient problem in conventional
recurrent neural networks (RNNs) [13]. It has been successfully
used in speech recognition applications [14]. LSTM-RNNs
were also applied to dysarthric speech recognition [15]. In [15],
LSTM-RNNs produced better performance than standard DNN
for most mildly dysarthric speakers while LSTM-RNNs gave
worse performance for severely dysarthric speakers.

Combining CNNs and LSTM-RNNS, called convolutional
LSTM-RNNs (CLSTM-RNNS), has benefit from CNNs for lo-
cal feature extraction and LSTM-RNNs for temporal model-
ing, and it has shown better performance than CNNs alone
and LSTM-RNNs s alone for sequential modeling such as speech
recognition [16, 17] and music tagging [18]. People with
dysarthria have the problem in controlling speech muscles,
and therefore, acoustic cues in time-frequency region are of-
ten shifted [11]. These speech characteristics are significantly
dependent in time. Therefore, CLSTM-RNNs might be more
effective in modeling dysarthric speech than CNNs or LSTM-
RNNs alone. However, CLSTM-RNNSs have rarely been stud-
ied in dysarthric speech recognition.

In this paper, we investigate the effectiveness of CLSTM-
RNNs for the phoneme recognition of dysarthric speech. We
tested four types of CNNs including F-CNNs, T-CNNs, TF-
CNNs, and PTF-CNNs, and their combinations with LSTM-
RNNs. Our approach was evaluated on a dataset of phrases
collected from nine dysarthric speakers with multiple record-
ing sessions in a speaker-independent way. The experimental
results showed CLSTM-RNNs produce promising performance
over either CNNs or LSTM-RNNS s alone. In particular, the over-
all ASR performance was the best on time-frequency convolu-
tional LSTM-RNNSs. Further, we compared the performance
across speakers and sessions.

2. Dysarthric Speech Data

A dysarthric speech dataset collected from nine patients with
amyotrophic lateral sclerosis (ALS) (6 females and 3 males)
was used. The participants were all American English talkers.
ALS is also known as Lou Gehrig’s disease, which is one of the
most common motor neuron diseases [19], resulting in progres-
sive degeneration of both upper and lower motor neurons [19].
Four of the patients visited the lab more than once for the data
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collection. The average duration between consecutive sessions
is six months for those patients. Thus, we collected the speech
data in eighteen sessions from nine patients in total.

The average age at their first visit was 62.8 years old
(SD=8.8). They are all early diagnosed (within half to one year)
but as ALS progresses the speech intelligibility gets worse.
Thus, we measured perceptual speech intelligibility scores for
each session. The speech intelligibility of those participants
with ALS varied from normal (100%) to severely unintelligi-
ble speech (0%). Speech intelligibility is diagnosed by a speech
language pathologist. To understand the performance of our
speech recognition algorithms for different levels of dysarthria,
we divided the data set into three groups based on their speech
intelligibility: eleven sessions as high (above 90%), four ses-
sions as middle (65-90%), and three sessions as low (below
65%).

During each recording session, each subject produced up to
4 repetitions of 20 unique sentences at their habitual speaking
rate and loudness. These sentences are selected in daily conver-
sations (e.g., How are you doing?) or related to patient’s daily
use (e.g., I need to make an appointment.). In total, 1,289 ut-
terances for 20 unique phrases were collected. The number of
phonemes is 17,712 and the number of unique phonemes is 39.

We also collected normal speech data from seven American
English speakers (four females and three males). The mean age
of the participants was 25.4 years old (SD=3.6). No history of
speech, language, or cognitive problems from any participant
was reported. Each subject participated in one session in which
he or she repeated a list of 132 phrases twice at their habitual
speaking rate. The phrases that are frequently used in daily life
were selected from [20]. Fourteen phrases from the ALS dataset
and normal dataset were overlapped. These normal speech data
were used for acoustic model training, which will be discussed
in Section 4.1. The sampling rate of all the speech data was 16
kHz.

3. Model

We briefly explain four types of CNN structures: F-CNN, T-
CNN, TF-CNN, and PTF-CNN. The CNN has one convolu-
tional layer, one max pooling layer, and one fully connected
layer before the softmax layer. For CLSTM-RNN, two LSTM
layers were used on top of one convolutional and one max pool-
ing layers instead of the fully connected layer. For all neural
networks, the input is 40 log mel filterbank energy and their
first and second derivatives with 9 context window.

3.1. Convolutional neural network (CNN)

Frequency-domain CNN (F-CNN) applies convolution and
pooling along the frequency axis, and therefore, it can extract
useful spectral features while reducing frequency variance. We
used a 8 x 1 frequency filter, non-overlapping max pooling with
a pooling size of 3, and 90 feature maps.

Time-domain CNN (T-CNN) applies convolution and pooling
along the time axis, and therefore, it can represent modulating
characteristics while keeping invariance to a small shift in time.
We used a 1 x 4 time filter, non-overlapping max pooling with
a size of 3, and 30 feature maps.

Time-frequency CNN (TF-CNN) applies convolution and
pooling along both the time-frequency axis, and therefore, it
can extract robust features that are insensitive to a small shift in
the time-frequency axis. We used a 8 X 4 time-frequency fil-
ter, non-overlapping max pooling with a size of 3 x 3, and 40
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Figure 1: CLSTM structure for (a) F/T/TF-CLSTM and (b)
PTF-CLSTM.

feature maps.

Parallel TF-CNN (PTF-CNN) has two CNNs that are F-CNN
and T-CNN [12]. The units of the max pooling layer in F-CNN
and T-CNN are linked with the fully connected layer. In gen-
eral, the number of units of the max pooling layer in T-CNN are
much larger than with F-CNN. We added a linear layer to reduce
feature dimension, before passing this to the fully connected
layer. We set the output size of the linear layer as the same di-
mension with F-=CNN. F-CNN and T-CNN have the same struc-
ture with above mentioned networks.

3.2. Convolutional LSTM-RNN (CLSTM-RNN)

CLSTM-RNN uses 2 LSTM-RNN layers to summarize tempo-
ral patterns on top of the CNNs instead of a fully connected
layer. We combined the four types of CNNs with LSTM-RNN,
resulting in F-CLSTM-RNN, T-CLSTM-RNN, TF-CLSTM-
RNN, and PTF-CLSTM-RNN, respectively. The schematic di-
agram of this structure are represented in Figure 1.

CLSTM-RNN is able to capture the key characteristics of
dysarthric speech for speech recognition by modeling long-
range temporal structures with time-frequency shift-robust fea-
tures. Therefore, CLSTM-RNN may be effective in recognizing
dysarthric speech.

3.3. Experimental setup

We used HMM-based dysarthric speech recognition systems
where each state can be modeled by GMM or neural net-
works. We compared four types of ASR systems: GMM-HMM,
DNN-HMM, CNN-HMM, and CLSTM-RNN-HMM. It con-
sists of 719 tied-state (senone) left-to-right triphone HMMs,
where each HMM has 3 states. The senones were obtained us-
ing the decision tree-based state tying method. GMM-HMM
was trained using 39 dimensional mel-frequency cepstral coef-
ficients, consisting of 12 cepstral coefficients, 1 energy term,
and their first and second derivatives with frame size of 25 mil-
liseconds and shift size of 10 milliseconds. DNN-HMM was
trained using 40 dimensional log mel-filterbank energy features
and their first and second derivatives with a context window of 9
frames. The DNN had 3 hidden layers with 512 hidden units at
each layer and the 719 dimensional softmax output layer, corre-
sponding to the senones of the GMM-HMM system. In prelim-
inary experiments, we tested from 1 to 6 layers with 256, 512,
and 1,024 hidden units at each layer and obtained the best re-



Table 1: PERs (%) with training set combination on GMM

.. Speech intelligibility
Training data High | Mid | Low SA | GA
Normal 689 | 72.1 | 79.1 | 71.3 | 73.4
Dysarthric 50.4 | 53.2 | 72.0 | 54.6 | 58.5
Mixed 42.0 | 458 | 67.6 | 47.1 | 51.8
Table 2: PERs (%) on CNN
Speech intelligibility
Model High | Mid | Low SA | GA
GMM 42.0 | 458 | 67.6 | 47.1 | 51.8
DNN 359 | 419 | 714 | 43.1 | 49.7
F-CNN 354 | 41.1 | 70.7 | 425 | 49.0
T-CNN 349 | 422 | 712 | 426 | 494
TF-CNN | 335 | 409 | 714 | 414 | 48.6
PTF-CNN | 334 | 415 | 719 | 41.6 | 489

sults on the 3 hidden layers with 512 hidden units. The paramet-
ric rectified linear unit (PReLLU) activation function was used
and the network was trained using backpropagation.

For each CNN, a variety of filter sizes and feature maps
were tested and we set the parameters as in Section 3.1. One
fully connected layer with 512 hidden units was used on top of
the CNN. LSTM had 2 hidden layers with 320 LSTM cells plus
200 recurrent projection units [14] at each layer and the 719 di-
mensional softmax output layer. The parameters were trained
using backpropagation through time. For CLSTM-RNN, we
used the same structure of CNN and replaced the fully con-
nected layer with 2 LSTM-RNN layers. The bigram phoneme
language model was used for the phoneme sequence recogni-
tion. The bigram language model was trained using the TIMIT
training set. The training and decoding were performed using
the Kaldi speech recognition toolkit [21].

Phoneme error rates (PERs) were used as the performance
measure of dysarthric speech recognition. Leave-one-subject-
out cross validation was used to perform speaker-independent
phoneme recognition in the experiment. We excluded the ses-
sion data with low speech intelligibility during training because
adding these data to the training set degraded the performance.
Thus, we only used the session data with high and mid speech
intelligibility from each speaker as a training set. The average
performance of cross validations was reported as the overall per-
formance.

4. Results and Discussion
4.1. Baseline

We first explored the effect of a training set to construct a bet-
ter baseline. We compared normal training data from 7 normal
speakers, dysarthric training data from 8 dysarthric speakers
with high and mid speech intelligibility sessions (cross valida-
tion training set), and mixed training data (normal + dysarthric)
on the GMM-based ASR system in Table 1. We averaged test
sessions’ performance depending on their speech intelligibility
level. Here, SA indicates the average of all the test sessions
and GA means the average of three speech intelligibility groups.
Because the number of sessions associated with each speech in-
telligibility group is different, GA can show balanced error rates
over the groups. The lowest PER in each column is in bold. As
shown in Table 1, mixed training produces better results over
the normal and dysarthric training conditions. The small num-
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Table 3: PERs (%) on CLSTM-RNN

Speech intelligibility
Model High | Mid | Low SA | GA
LSTM 295 | 33.8 | 634 | 36.0 | 42.2
F-CLSTM 252 | 25,5 | 604 | 31.1 | 37.0
T-CLSTM 30.6 | 379 | 594 | 37.0 | 42.6
TE-CLSTM 25.8 | 26.3 | 54.1 | 30.6 | 354
PTF-CLSTM | 27.0 | 26.6 | 619 | 32.7 | 385
OGMM ODNN ETF-CNN ELSTM BTF-CLSTM
R 71.471.4
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Figure 2: PERs on the selected models.

ber of training data for dysarthric speech is usually available,
so using a larger number of normal/out-of-domain speech data
is helpful to train acoustic models [5,22,23]. In the following
experiments, mixed training is used as a default setting.

We also measured session-dependent performance for
dysarthric speakers using only each session data based on
GMM-HMM. The performance was evaluated based on leave-
two-utterances-out cross validation for each session. The aver-
age of all the test sessions (SA) was 51.0% and the average of
three speech intelligibility groups (GA) was 52.0%, which show
worse performance than mixed training condition. In addition,
the PER of normal speakers was 44.4%, which was obtained
using only normal speech data through leave-one-subject-out
cross validation (7 cross validation).

4.2. Effect of CNN

Table 2 compares the performance of ASR systems based on
the four types of CNNs and DNN. As can be seen, all the CNNs
outperformed DNN on both SA and GA. Specifically, F-CNN
was slightly better than T-CNN. Considering the frequency and
time convolution together (i.e., TF/PTF-CNN) produced better
performance than each one. TF-CNN was the best on both SA
and GA, producing PERs of 41.4% and 48.6%, respectively.
Interestingly, GMM was better than deep models for the low
speech intelligibility group while deep models were much bet-
ter than GMM for the high and mid speech intelligibility groups.
This indicates that DNN- and CNN-based acoustic models help
to better discriminate between phonemes for the high and mid
speech intelligibility groups. However, these types of deep
models are still challenging in modeling severely unintelligible
speech.

4.3. Effect of CLSTM-RNN

Table 3 shows the performance of LSTM-RNN and CLSTM-
RNN. As can be seen, almost all the CLSTM-RNN models were
better than LSTM-RNN. T-CLSTM-RNN produced better re-
sults than LSTM-RNN for the low intelligible speech whereas
for the high and mid intelligible speech, its performance



Table 4: PERs (%) of the selected models for each individual

session

Spk Sess. | Intell. (%) CNN [ Iljg”l}}l\/([(ﬁ) CIST™M
SPK1 S1 95.4 (H) 25.8 19.1 16.7
SPK2 S1 80.0 (M) 43.8 40.0 26.9

S1 100 (H) 44.1 51.2 51.8

SPK3 S2 100 (H) 26.3 31.5 28.7
S3 100 (H) 45.5 48.0 36.8

S1 98.1 (H) 31.2 31.3 27.3

SPK4 S2 97.2 (H) 13.7 11.3 10.5
S3 79.0 (M) 24.7 22.9 16.7

S1 99.0 (H) 31.2 20.1 194

SPK5 S2 98.1 (H) 429 25.5 14.1
S3 14.5 (L) 66.7 56.5 29.5

S4 0(@L) 78.8 74.7 74.6

S1 94.5 (H) 33.5 20.3 16.4

SPK6 S2 80.9 (M) 43.5 28.9 26.8
S3 23.6 (L) 68.9 59.2 58.4

SPK7 S1 99.0 (H) 43.6 35.5 27.9
SPKS S1 96.3 (H) 30.7 29.1 342
SPK9 S1 79.0 (M) 51.8 43.7 35.1
Average 41.4 36.0 30.6

Standard Deviation 16.8 16.6 16.5

was worse than LSTM-RNN. When we consider frequency-
domain convolution (i.e., F-CLSTM-RNN, TF-CLSTM-RNN,
and PTF-CLSTM-RNN), the performance was much improved.
Specifically, F-CLSTM-RNN was the best on the high and mid
intelligible speech while TF-CLSTM-RNN was the best on the
low intelligible speech. In addition, we obtained the lowest PER
on TF-CLSTM-RNN in terms of SA and GA, showing 30.6%
and 35.4%, respectively.

Figure 2 summarizes the PERs on the selected models
(GMM, DNN, TF-CNN, LSTM-RNN, and TF-CLSTM-RNN).
As shown in Figure 2, LSTM-RNN provided better results
than GMM, DNN, and TF-CNN for all the speech intelligibil-
ity groups. This implies that modeling temporal structures by
LSTM-RNN may be more important in recognizing dysarthric
speech. When we used TF-CLSTM-RNN, we were able to ob-
tain the best performance for all the groups, producing 12.5%,
22.1%, and 14.6% relative improvements in the PER over
LSTM-RNN for high, mid, and low intelligible speech, respec-
tively. This indicates TF-CLSTM-RNN can effectively capture
the time-frequency characteristics over time even for highly un-
intelligible speech.

4.4. Evaluation of each individual session

PERs of the selected models (TF-CNN, LSTM-RNN, and TF-
CLSTM-RNN) for each individual are presented in Table 4.
Here, “Spk” means speaker ID and “Sess.” indicates their ses-
sion ID. The average duration between successive sessions is 6
months. “Intell.” is the perceptual speech intelligibility score in
percent and the letters in parenthesis indicate their speech intel-
ligibility groups (i.e., H: high, M: mid, and L: low). The lowest
PER in each row is in bold. As can be seen, TF-CLSTM-RNN
gave the best results for almost all the speakers/sessions includ-
ing low intelligible speech sessions. In particular, TF-CLSTM-
RNN produced a 47.7% relative improvement in the PER over
LSTM-RNN for the 3rd session data of SPK5 (i.e., SPK5-S3,
speech intelligibility of 14.5%). However, it was still very chal-
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lenging for extremely low intelligible speech (SPK5-S4, speech
intelligibility of 0%).

4.5. Discussion

We observed high variability in speech intelligibility and ASR
performance across sessions within individual speakers because
the rate of disease progression varies among speakers with ALS.
For example, SPK5’s speech intelligibility declined from 99.0%
to 0% and their PER varied from 14.1% to 74.6%. As the dis-
ease progresses, tongue body and jaw movement patterns of
ALS patients become different from the articulatory motion pat-
terns of normal speakers [24]. For this reason, the acoustic char-
acteristics in early sessions from speakers (e.g., SPK5-S1 and
SPK5-S2) are similar to those of normal speakers. Contrast-
ingly, the acoustic characteristics in late sessions from speak-
ers (e.g., SPK5-S3 and SPK5-S4) show different patterns com-
pared with early sessions: poor articulation, long pause between
words, and low speaking rates (about 50% lower) [24]. All of
which lower ASR performance and the capability to use ASR
as ALS progresses.

This current study was conducted in the context of a
speaker-independent ASR task to evaluate the generality of the
recognition models. Our experimental results demonstrated that
CLSTM-RNN has the potential to improve the ASR perfor-
mance as a speaker-independent acoustic model for the patients
with ALS. To further improve the ASR accuracies, techniques
for session/speaker variability compensation including acoustic
feature transformation [25,26], acoustic model adaptation [27],
and pronunciation variation modeling [27,28] can be further ap-
plied. We speculate that the results may improve once a larger
training dataset from more ALS patients is obtained. A further
study with larger data size and more patients with diverse sever-
ity of dysarthria is needed to verify this finding.

5. Conclusions and Future Work

In this paper, we investigated the effectiveness of CLSTM-RNN
for dysarthric speech recognition. We considered four types of
CLSTM-RNN, including F-CLSTM-RNN, T-LSTM-RNN, TF-
LSTM-RNN, and PTF-LSTM-RNN. A series of experiments
was performed in terms of the PER on 18 sessions speech data
from 9 ALS patients. Experimental results showed that the
CLSTM-RNN provides meaningful improvement over both the
CNN alone and the LSTM-RNN alone. We achieved the best
overall performance on TF-CLSTM-RNN (PERs of 30.6% and
35.4% for SA and GA, respectively). Our approach presents a
possibility in effectively modeling dysarthric speech (even low
intelligible speech) in a speaker-independent way. Future di-
rections include 1) a test of the CLSTM-RNN approach using a
larger dataset collected from more subjects, 2) applying speaker
adaptation/normalization techniques [27], and 3) using articula-
tory information [25,29].
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