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Abstract
Domain robustness is a challenging problem for automatic
speech recognition (ASR). In this paper, we consider speech
data collected for different applications as separate domains and
investigate the robustness of acoustic models trained on multi-
domain data on unseen domains. Specifically, we use Factor-
ized Hidden Layer (FHL) as a compact low-rank representation
to adapt a multi-domain ASR system to unseen domains. Ex-
perimental results on two unseen domains show that FHL is a
more effective adaptation method compared to selectively fine-
tuning part of the network, without dramatically increasing the
model parameters. Furthermore, we found that using singular
value decomposition to initialize the low-rank bases of an FHL
model leads to a faster convergence and improved performance.
Index Terms: speech recognition, domain adaptation, factor-
ized hidden layer

1. Introduction
Automatic speech recognition (ASR) systems are typically
trained in a data-driven manner and therefore, are susceptible to
performance degradation due to the mismatch between training
and testing conditions, such as speaker, recording channel and
acoustic environment. State-of-the-art ASR systems use deep
neural networks (DNNs) for acoustic modeling [1, 2] and/or
language modeling [3]. A wide range of DNN adaptation tech-
niques for robust ASR are described in [4, 5].

In practice, it is often not possible to correctly identify
the specific attributes (e.g. speaker and recording channel) of
a given speech data. However, these attributes are somewhat
correlated with the applications. For example, voice search [6]
queries are typically short, near-field and recorded using a mo-
bile device, while Google Home queries [7] are far-field and
multi-channel. YouTube video captioning [8], on the other
hand, deals with much longer speech data with different record-
ing quality depending on the genre. Therefore, it is reasonable
and convenient to consider each application as a separate do-
main.

Although it is possible to train domain-specific acoustic
models given sufficient training data, this approach does not
scale well to a large number of domains. Therefore, it is im-
portant to consider a compact adaptation method with a smaller
number of domain-specific parameters. In this paper, we inves-
tigate the use of Factorized Hidden Layer (FHL) [9] to impose
a low-rank constraint to reduce the number of domain-specific
parameters. Previously, FHL has been extensively studied for
speaker adaptation [10, 11, 12, 13]. FHL represents the pa-
rameters as a weighted linear interpolation of bases. For a ma-
trix, such as the DNN weights, the bases can be represented
by low-rank matrices to achieve a more compact model. For

domain adaptation, we use a one-hot encoding for the inter-
polation weights such that each basis corresponds to one do-
main. The rank of the bases is adjusted to control the number
of domain-specific parameters.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview and prior work on the domain-
robust automatic speech recognition. Section 3 describes the
factorized hidden layer (FHL) adaptation method and its appli-
cation to domain adaptation. Section 4 presents the experimen-
tal setup and results.

2. Domain Robustness
Automatic speech recognition systems are sensitive to the data
mismatch problem where the characteristics of the data at de-
ployment time deviate from those of the training data. Acoustic
mismatch can be caused by variability due to speaker (accent,
speaking rate), channel (microphone, bandwidth, encoding) and
environment (background noise, room condition).

Since there is no clear definition for what constitutes a do-
main, we will consider data for each application as a domain.
The goal is to build an ASR system that is robust to domain mis-
match. A simple approach is to train a domain-invariant model
that generalizes well to unseen domains by using training data
from multiple domains. This is referred to as multi-style train-
ing [14, 15, 16]. This approach works well as a general-purpose
ASR system when the target domain cannot be explicitly deter-
mined during deployment.

To cope better with a new domain, especially one that is
substantially different from the training domains, it helps to in-
clude some training data from the new domain. Instead of re-
training the model to include a new domain, it is quicker to
fine-tune a multi-domain model to this new domain. Regular-
ization techniques, such as dropout [17], can be used to prevent
over-fitting. Additional loss term, such as the KL-divergence
between the outputs of the original and fine-tuned models [18],
can be used to ensure that the fine-tuned model does not deviate
significantly from the original model. However, this results in
one full model for each domain, which does not scale well to a
large number of domains.

Compact model adaptation techniques offer a better so-
lution for minimizing the mismatch between the model and
the target domain. Many DNN adaptation methods have
been previously studied, including i-vector feature augmenta-
tion [19, 20], speaker-code adaptation [21], cluster adaptive
training (CAT) [22, 23], factorized hidden layer [9], learning
hidden unit contribution (LHUC) [24], singular value decom-
position based subspace adaptation [25] and low rank plus di-
agonal (LRPD) [26, 27]. A more comprehensive review of the
recent DNN adaptation techniques can be found in [4].
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3. Factorized Hidden Layer
Factorized Hidden Layer (FHL) [9] is a deep neural network
(DNN) adaptation technique that provides a structured and com-
pact representation. FHL represents the adapted parameter as a
weighted linear interpolation of bases. An FHL representation
of a vector is given by:

b̃
(d)

= b0 +
N∑

i=1

λ
(d)
i bi, (1)

where b0 and b̃
(d)

represent the vector before and after adapta-
tion. bi denotes the ith basis whose corresponding interpolation
weight is given by λ(d)

i . N is the total number of bases. Super-
script (d) denotes domain-dependent parameters. Similarly, a
matrix is expressed as:

W̃
(d)

= W 0 +
N∑

i=1

λ
(d)
i W i (2)

≈ W 0 +
N∑

i=1

λiU iV
>
i , (3)

where W 0 and W̃
(d)

represent the matrix before and after
adaptation. W i denotes the ith basis, which are often approxi-
mated using a low-rank matrix given by U iV

>
i . If W̃

(d)
, W 0

and W i are matrices of size N ×M , then U i and V i are ma-
trices of size N × R and M × R, respectively, where R corre-
sponds to the rank of U iV

>
i .

In this paper, we use a one-hot encoding to represent the
interpolation weights such that each basis corresponds to one
domain. This is different from the previous FHL work [9, 10,
11, 12, 13] where the interpolation weights are adapted. The
FHL-adapted vector and matrix can then be written as:

b̃
(d)

= b0 +∆
(d)
b (4)

W̃
(d)

= W 0 +∆(d)
w ≈W 0 +∆(d)

u ∆(d)
v

>
, (5)

where ∆
(d)
b and ∆

(d)
w are the domain-dependent offset vector

and matrix, respectively. ∆(d)
u ∆

(d)
v

>
is a low-rank approxima-

tion of the offset matrix. The number of columns for ∆(d)
u and

∆
(d)
v can be adjusted to control the rank of the effective off-

set matrix and the complexity of the adaptation model. Unlike
other work on low-rank model compression [28, 25, 29], we
apply low-rank approximation only to the domain-dependent
parameters without compromising the performance of the base
model.

3.1. FHL Adaptation for LSTM

Long Short-Term Memory (LSTM) [30, 31] is commonly
used in acoustic modeling for state-of-the-art automatic speech
recognition systems [31]. Previously, FHL has been applied
to LSTM for speaker adaptation [12]. An LSTM model is de-
scribed by the following equations:

it = σ (W xixt +W rirt−1 +W cict−1 + bi)

f t = σ (W xfxt +W rfrt−1 +W cfct−1 + bf )

ct = f t � ct−1 + it � tanh (W xcxt +W rcrt−1 + bc)

ot = σ (W xoxt +W rort−1 +W coct−1 + bo)

mt = ot � tanh (ct)

rt = Wmrmt

Table 1: Amount of train/adaptation data for each dataset.

Dataset Applications Hours

Train

YouTube 117k
Dictation 18k
Voice Search 17k
Google Home 8k
Call-center 1k

Adaptation Telephony 689
Voice Mail 3k

Evaluation Telephony 16
Voice Mail 8

where t is the time step and σ is the sigmoid function. it, f t, ot,
ct, mt and rt are the vectors for input gate, forget gate, output
gate, cell state, cell output, and projection values respectively.
W ∗∗ are weight matrices and b∗ are bias vectors. All the peep-
hole weight matrices, W c∗, are diagonal. When coupled input-
forget gates are used [32], W ∗f = I −W ∗i. The bias vectors
and the diagonal vector of the peephole weight matrices can be
adapted using Eq. 4. Likewise, the full weight matrices, W x∗
and W r∗, can be adapted using Eq. 5. In TensorFlow [33], the
W x∗ and W r∗ matrices are stacked together to form a single
weight matrix for more efficient matrix multiplication:

W =




W xi W ri

W xf W rf

W xc W rc

W xo W ro


 (6)

We apply FHL to W instead of the individual weight matrices.

3.2. Parameter Initialization

The parameters b0 and W 0 can be initialized from an un-
adapted baseline system and fixed during subsequent domain
adaptation. The domain-specific parameters (∆(d)

b , ∆(d)
u and

∆
(d)
v ) are fine-tuned using data from a target domain. Instead

of a zero or random initialization, a better way to initialize
these parameters is to minimize the approximation error due
to the low-rank approximation in Eq. 5 using Singular Value
Decomposition (SVD). This is achieved by first fine-tuning the
weight matrix without a low-rank constraint to obtain W (d),
from which we compute ∆

(d)
w ). Then we compute the SVD

decomposition of ∆(d)
w to obtain

∆(d)
w ≈∆(d)

u ∆(d)
v

>
(7)

We keep the first r columns of ∆(d)
u and ∆

(d)
v to achieve the

desired rank.

4. Experimental Results
Table 1 summarizes the amount of data in the training, adap-
tation and evaluation data sets. The multi-domain training set
consists of 161k hours of human-transcribed speech data from
three main application sources. The majority of the data come
from YouTube (117k hours or 73%). The remaining train-
ing data come from dictation, voice search, Google Home and
Call-center. To evaluate the domain adaptation performance,
we chose the Telephony and Voice Mail data sets as unseen
domains. We extract 512-dimensional low-frame-rate log mel
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Table 2: Number of parameters for the baseline models.

Layers Per layer Cumulative
Count % Count %

LSTM 0 4,723,712 (13.9) 4,723,712 (13.9)
LSTM 1 6,296,576 (18.5) 11,020,288 (32.4)
LSTM 2 6,296,576 (18.5) 17,316,864 (50.9)
LSTM 3 6,296,576 (18.5) 23,613,440 (69.4)
LSTM 4 4,132,608 (12.1) 27,746,048 (81.5)
Dense 6,299,648 (18.5) 34,045,696 (100.0)

Table 3: WER performance of baseline models

Model WER
Telephony Voice Mail

Multi-domain 18.8 16.3
+ fine-tune 10.7 12.1

features [34] from speech waveform to train multi-layer LSTM
acoustic models. The baseline model is trained using the multi-
domain training data described in the previous section. The
models are initially trained using the cross-entropy loss function
for about 16 epochs, followed by 0.8 epochs of sMBR train-
ing [35].

The baseline model comprises 5 LSTM layers followed by
a fully connected softmax layer. The first 4 LSTM layers have
1024 units while the fifth LSTM layer has 768 units. The output
layer has 8192 units that correspond to the clustered triphones.
Table 2 shows the number of model parameters associated with
each layer. For domain adaptation, we applied FHL to all
five LSTM layers (as described in Section 3.1). There are only
about 500k adaptation parameters for FHL with rank 20 (which
account for about .5% of the total number of parameters in the
baseline model). With rank 100, the total number of adapta-
tion parameters increases to about 2.4M (7.1%). Nevertheless,
they are still much smaller compared to the number of parame-
ters for one layer of the network (13.9% of the baseline model
parameters).

Table 3 shows the word error rate (WER) performance of
the baseline multi-domain model and the models fine-tuned to
the respective unseen domains. It is evident from the results that
due to the mismatch between the training and evaluation data
sets, there is a substantial performance improvement when the
entire model is further fine-tuned to the target domain. How-
ever, this results in having one full model for each domain,
which may not be practical when dealing with a large number of
domains. Next, we investigate adaptation using FHL to achieve
a more compact per-domain model representation using low-
rank approximation.

4.1. FHL versus Selective Fine-tuning

We compare FHL with selective fine-tuning to see how per-
formance varies with the number of learnable parameters. For
FHL, the basis rank is adjusted to vary the number of adapta-
tion parameters. For selective fine-tuning, we adjust the adap-
tation complexity by updating only the parameters of the first n
LSTM layers. Fig. 1 shows the trade off between word error
rate performance (vertical axis) and the number of adaptation
parameters (horizontal axis) for models trained with the sMBR
criteria. The performance of the fine-tuned models improve

Figure 1: WER vs. number of adaptation parameters for models
adapted to the Telephony domain using the sMBR criterion.

roughly linearly with increasing number of fine-tuned layers.
Fine-tuning all 4 LSTM layers (23.6M parameters) achieves
10.8% WER. On the other hand, FHL adaptation with rank 20
achieved 11.6% WER using only 0.5M domain-specific param-
eters.

4.2. Varying adaptation data sizes

Next we examine the performance of domain adaptation using
smaller amount of adaptation data. Table 4 shows the WER
of adapting to the Telephone and Voice Mail domains using 10
hours, 30 hours and 100 hours of data. To prevent the models
from over fitting to the training subsets, we terminate training
when the performance diverges on a held-out development set.
When fine-tuning the full model, performance begins to diverge
after around 40 epochs for the three training subsets. For the
Telephony domain, increasing the fine-tuned layers improves
performance up to 4 layers, beyond which there is sign of over-
fitting. For Voice Mail, most of the gains come from fine-tuning
just the first two layers.

The performance of FHL adaptation is worse than fine-
tuning the entire model, even when there are only 10 hours of
data. This is counter-intuitive as we expect a more compact
model to be more robust when the amount of training data is
small. This suggests that by starting from a well-trained model
with appropriate learning rate and early stopping criterion, it
is possible to fine-tune the entire model reliably using only a
small amount of data. Nevertheless, FHL offers a much more
compact model representation. The number of parameters asso-
ciated with the FHL rank-100 bases is only 7.1% of the baseline
model. Increasing the basis rank from 20 to 100 does not im-
prove performance. This is surprising given that fine-tuning the
model gave better performance. This suggests that the low-rank
bases are much harder to learn. We will show in the next section
that SVD initialization can mitigate this issue.

4.3. Random vs. SVD Initialization

Finally, we compared random and SVD initialization for the
FHL bases. We obtained ∆

(d)
w from a fine-tuned model and

measure the normalized SVD approximation error of Eq. 7 as
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Table 4: Comparison of selective fine-tuning and FHL adapta-
tion using different amount of adaptation data.

Model Amount of WER
Data Telephony Voice Mail

Baseline — 18.8 16.3

Fine-tune 10hrs 16.6 14.5

(1 layer) 30hrs 16.0 14.0
100hrs 15.5 13.7

Fine-tune 10hrs 15.9 13.6

(2 layer) 30hrs 15.5 13.5
100hrs 14.6 12.5

Fine-tune 10hrs 14.3 13.5

(3 layer) 30hrs 13.5 13.3
100hrs 12.5 12.6

Fine-tune 10hrs 13.4 13.5

(4 layer) 30hrs 12.6 13.2
100hrs 11.7 12.4

Fine-tune 10hrs 13.8 13.4

(5 layer) 30hrs 13.1 13.0
100hrs 12.3 12.4

Fine-tune 10hrs 14.0 13.4

(all) 30hrs 13.2 12.9
100hrs 12.3 12.4

FHL 10hrs 15.2 13.7

(rank 20) 30hrs 14.1 13.3
100hrs 13.0 12.8

FHL 10hrs 15.2 13.7

(rank 100) 30hrs 14.0 13.3
100hrs 13.0 12.7

follows:

Esvd =

∥∥∥∆(d)
w −∆

(d)
u ∆

(d)
v

>∥∥∥
F∥∥∥∆(d)

w

∥∥∥
F

(8)

where || · ||F denotes the Frobenius norm of a matrix. The er-
ror has a minimum value of zero when full rank is used (i.e. no
low-rank approximation) and a maximum value of one when the
rank is zero (i.e. no adaptation). Fig. 2 shows how the approx-
imation error varies with rank when adapting to the telephony
domain with different amount of data. The approximation error
is smaller for models fine-tuned with smaller amount of data.

Table 5: Comparing FHL adaptation (rank 100) using random
versus SVD initialization.

Dataset Amount of WER
Data Random SVD

Telephony
10hrs 15.2 14.7
30hrs 14.0 13.7

100hrs 13.0 12.5

Voice Mail
10hrs 13.7 13.5
30hrs 13.3 13.0

100hrs 12.7 12.3

In Table 5, we compared the WER performance of the FHL

Figure 2: SVD approximation error vs. FHL rank.

adapted models using random versus SVD initialization (as de-
scribed in Section 3.2). The results show that SVD initialization
consistently achieved better performance compared to random
initialization by around 0.2–0.5% absolute. Fig. 3 shows the

Figure 3: Comparison of WER improvement with training
epochs for random and SVD initialization of FHL bases.

WER improvements of FHL rank-100 adaptation to the Tele-
phony domain with 100 hours of data. It is clear from the fig-
ure that SVD initialization improves convergence substantially.
Random initialization achieved 13.0% WER after 350 epochs.
With SVD initialization, FHL adaptation achieved 13.1% WER
after only 63 epochs and 12.5% WER after 130 epochs.

5. Conclusions
This paper presents an investigation into the use of Factorized
Hidden Layer (FHL) to achieve compact model adaptation to
unseen domains. Although increasing the diversity of the multi-
domain training data improves performance on unseen domains,
further adaptation using FHL on small amount of target domain
data can significantly improve recognition performance with-
out dramatically increasing the model parameters. We found
that adaptation using a low-rank approximation for the LSTM
weight matrices for all the layers is more effective compared to
selectively fine-tune only part of the network. Furthermore, sin-
gular value decomposition can be used to initialize the low-rank
approximation for faster convergence and better performance.
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