
Cross-Corpora Convolutional Deep Neural Network Dereverberation 

Preprocessing for Speaker Verification and Speech Enhancement 

Peter Guzewich
1
, Stephen Zahorian

1
, Xiao Chen

1
, Hao Zhang

1 

1
Department of Electrical and Computer Engineering, Binghamton University, NY, USA 

[peter.guzewich,zahorian,xchen49,hzhang20]@binghamton.edu 

 

Abstract 

Deep neural network (DNN) dereverberation preprocessing 

has been shown to be a viable strategy for speech 

enhancement and increasing the accuracy of automatic speech 

recognition and automatic speaker verification. In this paper, 

an improved DNN technique based on convolutional neural 

networks is presented and compared to existing methods for 

speech enhancement and speaker verification in the presence 

of reverberation. This new technique is first shown to enhance 

speech quality as compared to other existing methods. Then, a 

more thorough set of experiments is presented that assesses 

cross-corpora speaker verification performance on data that 

contains real reverberation and noise. A discussion of the 

applicability and generalizability of such techniques is given.  

Index Terms: dereverberation, convolutional deep neural 

networks, speech quality, speaker verification 

1. Introduction 

Deep neural networks (DNNs) have seen a surge of interest in 

the research community, having been successfully applied to a 

large number of different tasks including automatic speech 

recognition (ASR) and speaker identification (SID). This 

explosion in research is fueled in part by the prevalence of so-

called “big data” in modern systems. Because deep learning is 

a data driven approach, it is only with the help of modern large 

databases that networks can be fine-tuned to a degree not 

possible in the past. However, in many cases, databases are 

not specifically suited to the task at hand or it isn’t possible to 

leverage them in a given situation. Therefore, the “not enough 

data” problem is still a real possibility, particularly if the 

training data is too dissimilar from the test data.  

While current state-of-the-art speech processing systems 

perform well, they often degrade with speech from noisy or 

reverberant environments. Many preprocessing techniques 

have been proposed to deal with these situations (e.g. [1] [2] 

[3] [4]), with many also including deep learning (e.g. [5] [6] 

[7] [8] [9] [10]). In this paper, recent deep neural network 

dereverberation preprocessing techniques are addressed. An 

improved technique based on convolutional neural networks is 

proposed and its performance is experimentally shown to be 

better than other methods. Finally, a detailed analysis of 

performance on real data containing real reverberation and 

noise, as opposed to simulated, is presented.  

2. Background 

2.1. Dereverberation with DNNs 

Sound waves traveling in a reverberant environment reflect off 

of walls and objects. The overlapping waves produce 

temporal/spectral smearing which reduces the intelligibility of 

speech [11] and degrades performance for both ASR and SID. 

Recent work has examined the potential of preprocessing 

speech waveforms with deep neural networks for speech 

enhancement and to increase performance of other speech 

processing tasks [7] [8] [9] [10]. The general paradigm for 

these methods involves mapping spectral representations of 

individual frames of reverberant speech to estimates of the 

spectrum of corresponding clean speech frames. The details of 

these works differ, but all follow this general principle: using a 

multilayer feedforward deep neural network to enhance frames 

of speech. In each of these, speech quality and intelligibility 

were used as metrics for speech enhancement performance. In 

[8], Han et al. also showed improved ASR performance. In 

[10], the method improved speaker verification performance. 

These works showed the technique was beneficial for these 

other speech tasks, despite not being designed to discriminate 

between phonemes or speaker specific characteristics. 

2.2. Reverberant and noisy data 

An important detail of the aforementioned works is that they 

all used only artificially reverberant speech. Due to the nature 

of the approach, training the networks requires having 

perfectly matched sets of clean and reverberant data. There are 

databases that could meet this need to some degree, but it is 

generally much easier to create the data artificially. In each of 

those works, the databases were generated by corrupting clean 

speech waveforms by convolving them with room impulse 

responses (RIRs) to produce reverberant versions. While this 

is an easy way to create data, good results on tests performed 

on this data don’t necessarily extend to real reverberation.  

To further explore the issue of real reverberation, this 

study also makes use of the Multiroom8 corpus provided by 

the Air Force Research Lab (AFRL) in Rome, NY. This 

database is fairly small, containing 807 spontaneous and 

prompted speech utterances from 52 speakers totaling about 

40 hours of speech recorded in 4 different sized rooms, 3 

containing 6 microphones each. Multiple microphones were 

used during the recordings, each placed in a different location 

to provide signals with varying degrees of signal-to-noise ratio 

(SNR) and reverberation. This dataset was used to allow for a 

loose comparison with the previous work of [4]. More specific 

details on the database and setup can be found in that work. 

The experimental results given later in section 4 are not 

directly comparable to those given in [4], but a direct 

comparison between the methods is made in section 4. 

As the waveforms used were recorded in common 

environments (e.g. conference rooms), they contain unwanted 

noise, such as humming sounds from the building’s heating 

system, as well as reverberation. This “real world” data 

therefore adds a complication to the work, that of 

simultaneous reverberation and noise mitigation. It has been 
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suggested that these items are best left separated [12], but in 

this paper, they are considered jointly, although somewhat 

indirectly.  

2.3. Convolutional deep neural networks 

Convolutional neural networks became quite well-known in 

the last decade for their incredible performance for image 

processing and classification. Perhaps the most famous paper 

on the subject introduced a convolutional network known as 

AlexNet [13]. A convolutional network layer includes a 

number of filters that are each used to process the input. The 

goal is to train a series of two-dimensional convolutional 

filters to produce activation maps that hold important 

information. The key point behind these two-dimensional 

filters is that they can be trained to search for patterns that 

exist in the spatial relationship of adjacent input values. As 

mentioned, these networks gained notoriety for image 

processing because they could be used to pick out things like 

shapes in images and therefore have been found to be useful 

for image classification. 

Speech waveforms are one-dimensional, but they are often 

represented in a time-frequency plane commonly known as a 

spectrogram. By transforming the signal into a spectral 

representation, which is nearly always the first step for speech 

processing tasks, a speech signal can therefore be 

transparently inserted into the paradigm of convolutional 

networks. The spectral representation of speech exhibits 

frequency and temporal correlations, so the imposed structure 

of a convolutional network can therefore be expected to be 

well suited to the task of extracting important information. 

Compared with feedforward networks previously used, this 

structure can be expected to be a useful guide for the network 

during the training process. 

2.4. Performance metrics 

Performance of the dereverberation and denoising networks 

was first judged on the basis of speech quality scores. 

However, the ultimate goal of the work is to improve 

performance for SID tasks, so experiments were also done to 

examine performance for speaker verification. Specifically, 

perceptual evaluation of speech quality (PESQ) [14] and 

short-time objective intelligibility (STOI) [15] were used as 

the basis for speech enhancement performance. Then, equal 

error rates (EERs) for speaker verification were used to 

quantify SID task performance. Speaker verification and 

speaker identification are quite similar tasks. Therefore 

reduced EERs are a good indication that SID performance 

would improve as well.  

3. Convolutional neural network strategy 

for improved dereverberation  

The proposed technique is an improvement on our previous 

work [10] with the main framework of the processing being 

similar, but with a few key modifications. The most notable 

change is that the feedforward deep neural network was 

replaced with one based on a convolutional structure.  

As mentioned above, training the network requires 

matched sets of reverberant and clean data. For all artificially 

created data, RIRs generated with the improved image source 

method [16] for a range of T60 values were convolved with 

clean waveforms to produce the reverberant versions. For each 

RIR, one reverberant copy of the data was produced. Training 

waveforms were again time-aligned to the point of maximum 

cross-correlation, but the amplitudes were not directly scaled 

to be equal. Instead, the waveforms were scaled so that the 

variances of their amplitudes were all equal. This strategy 

boosts performance by better accounting for the dynamic 

nature of speech across different speakers and channels.  

After time domain alignment processing, the waveforms 

were transformed into log-magnitude spectral values via a fast 

Fourier transform (FFT) of size 512, thus creating 257 

magnitude values for each frame. This size, rather than a 

larger one, was chosen as a compromise to computational 

complexity at training time because convolutional network 

layers generally take longer to train than feedforward layers. 

The log-magnitude spectrum was then normalized using the 

common mean and variance normalization (MVN) strategy on 

a per-frequency-bin basis. These values were then passed 

through the network (several context frames of input, one 

frame of output).  

3.1. Proposed network structure 

The network structure is a familiar one, based on a well-

known work in the computer vision field, VGGNet [17]. The 

VGGNet network utilizes a large number of small 

convolutional filters in succession to emulate the capability of 

larger network layers. The key insight of this strategy is that 

small filters (e.g. 3x3) do not envelope much area, but if 

combined in succession can have a similar input space as a 

larger single layer. The advantage of this method is that the 

layers are quicker to train as they contain fewer parameters. 

The pseudo-code representing the network structure is shown 

in Figure 1. The proposed network includes a total of nine 

convolutional layers with noted number/size (e.g. 32, 3:3) 

filters, four pooling layers, and two final feedforward layers. 

Between all layers is a rectified linear activation function. 

 
Figure 1: CNTK pseudo-code for proposed network 

The networks were trained with the Microsoft Research 

(MSR) Cognitive Toolkit (CNTK) [18] to minimize square 

error between the estimated spectrum and clean spectrum. 

Parallel processing was done with an NVidia GTX TITAN 

GPU card, but training still took several days, depending on 

the dataset. A forward and backward context of 7 frames was 

used for a 257x15 dimensional input. As discussed in [9] and 

[10], changing the frame context window affected 

performance differently for different T60 times (higher T60 

benefits from more context). A context of 15 total frames was 

chosen as a compromise. The network learning rate was 

initialized at 0.0001 per batch and decayed by half every few 

epochs. The minibatch size was 128, the dropout rate was 0.5, 

ConvolutionalLayer {32 filters, kernel (3:3)} : ReLU 

ConvolutionalLayer {32 filters, kernel (3:3)} : ReLU 

MaxPoolingLayer    {kernel (2:2), stride=(2:1)} 

ConvolutionalLayer {64 filters, kernel (3:3)} : ReLU 

ConvolutionalLayer {64 filters, kernel (3:3)} : ReLU 

MaxPoolingLayer    {kernel (2:1), stride=(2:1)} 

ConvolutionalLayer {128 filters, kernel (3:3)} : ReLU 

ConvolutionalLayer {128 filters, kernel (3:3)} : ReLU 

MaxPoolingLayer    {kernel (2:1), stride=(2:2)} 

ConvolutionalLayer {256 filters, kernel (3:3)} : ReLU 

ConvolutionalLayer {256 filters, kernel (3:3)} : ReLU 

ConvolutionalLayer {256 filters, kernel (3:3)} : ReLU 

MaxPoolingLayer    {kernel (2:1), stride=(2:2)} 

FullConnectlayer   {2048} : ReLU : Dropout 

FullConnectlayer   {2048} : ReLU : Dropout 
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and the momentum term was 0.8. 

4. Experiments 

A series of experiments were performed to demonstrate the 

speech enhancement and speaker identification potential of the 

proposed technique. First, the technique was evaluated on the 

basis of speech quality and intelligibility using artificially 

reverberant versions of the TIMIT [19] database. Then, to test 

for SID potential in reverberant and noisy conditions, 

experiments were performed using the Multiroom8 corpus and 

artificially reverberant versions of the phone conversation 

portion of the Mixer 6 database [20]. 

4.1. Speech Enhancement 

To directly compare with existing speech enhancement results, 

the same procedure was followed as in [10], which itself was 

designed to mimic the setup of [9]. Briefly, 10 artificial RIRs 

were generated for a range of T60 values (0.1s to 1s in 0.1s 

increments) and convolved with the entire TIMIT training set 

of 4620 utterances for a total of approximately 40 hours of 

reverberant speech. In [10], the training set included a copy of 

the clean data, but in this experiment it was left out. This point 

is addressed later in the paper. The test set was a random 

selection of 100 utterances from the TIMIT test set convolved 

with 20 newly generated RIRs with T60s ranging from 0.05s 

to 1s in 0.05s increments. Using the entire TIMIT test set 

produced similar results. 

 The network (Proposed) was trained and used to process 

test waveforms. The waveforms were also processed with 

Blind Spectral Weighting (BSW) [4], Temporal Masking and 

Thresholding (TMT) [3], an implementation of  Wu’s network 

from [9] (Wu), and by our previous network (Guzewich) in 

[10] for comparison. Average PESQ scores were computed for 

all cases including the ideal (Ideal) and unprocessed 

waveforms (Reverb) and shown in Figure 2. Figure 3 shows a 

sample reverberant spectrogram and its processed counterpart. 

 
Figure 2 : Average PESQ scores for Proposed, BSW, 

TMT, Guzewich, Wu, and baselines 

As is shown in the figures, the proposed method improves 

speech quality scores much more than the other methods. An 

interesting result from this experiment is the performance on 

fairly clean data (T60 < 0.2s). As mentioned, this proposed 

network was not trained with any clean data input, which was 

an important part of the previous work [10] (Figure 2, labeled 

Guzewich). Despite the use of “less” training data, the 

proposed network still outperformed the network from 

previous work for fairly clean data and there was no “drop-

off” in performance in that region as with the other two neural 

network methods. The proposed method produced scores 

remarkably close to the ideal baseline result on the top of the 

graph, which corresponds to perfect restoration of the 

magnitude spectrum combined with the reverberant phase.  

  
Figure 3 : An example reverberant TIMIT segment 

(left) and DNN processed (right) 

All the DNN processed waveforms were also evaluated 

with STOI, and average scores are shown in Figure 4. 

 
Figure 4: Average STOI scores for Proposed, 

Guzewich, Wu, and baselines 

4.2. Speaker verification 

Ideally speaking, a processed sentence from the proposed 

technique should appear as though it is a perfectly clean one, 

but although the proposed technique improves speech quality 

and intelligibility scores, it is not certain to improve 

performance for other speech processing tasks, especially for 

data containing real reverberation and noise. To assess 

potential for SID tasks, several speaker verification 

experiments were performed using the proposed technique 

without any further optimization for the SID task. These 

experiments used data with real reverberation and real noise 

from the Multiroom8 corpus. A portion of the Mixer 6 

database was also used which contained ~14 hours of 

telephone conversation speech from 594 speakers (292 males, 

302 female). This Mixer 6 data was chosen instead of TIMIT 

because it has the same bandwidth as Multiroom8.  

All speaker verification experiments were done using the 

Alize [21] iVector system with probabilistic linear 

discriminant analysis (PLDA) scoring. They used a 1024 

mixture universal background model, iVector dimension of 

200, and a PLDA Eigenvoice and Eigenchannel dimension of 

100 and 50, respectively. All of these models were trained 

using the ~14 hours of original Mixer 6 data. The enrollment 

and test data was some portion of the Multiroom8 corpus as 

noted for each experiment. There were 7 enrollment and test 

configurations which were based on those used in [4]. Tables 

1 and 2 contain these conditions in the first columns. The 

notation is enrollment-test, so for example, Enroll-Sm4 means 

enrollment data is from the enrollment (conference) room 

microphone and test data is from the 4th microphone from the 
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small room. There were 35 speakers that were present in every 

configuration, but as is noted later in this paper, when the 

dataset is split, speakers are split up (e.g. 17 speakers in one 

half, 18 in the other) so no common speakers occur between 

groups. The features used for speaker verification were Mel-

Frequency Cepstral Coefficients (MFCCs) [22] with a 25ms 

frame length and 10ms frame shift. We use the first 13 terms 

(excluding C0) with delta and delta-delta terms for a total of 

39 features. All speaker verification results are shown 

alongside baseline MFCCs, computed on the unprocessed 

data, and MFCCs computed from data processed by BSW, for 

comparison. 

The first set of results shows the technique was beneficial 

for the task of speaker verification, specifically with data 

containing real noise and reverberation. Two DNNs were 

trained, in round-robin fashion, using each half of the 

Multiroom8 corpus. Then, each network was used to process 

the opposite half of the data to be used in a verification 

experiment. This condition is labeled RR-Mult. Network 

training was possible by assuming the signals from the 

microphones situated closest to the speakers as the clean 

signals, even though these signals were not perfectly clean. It 

is likely that a dataset created with this DNN technique in 

mind would allow for better training.  

The next results show cross-corpora performance in the 

context of the “not enough data” problem. Another network 

was trained using only the Mixer 6 data, which was again 

corrupted 10 times using generated RIRs with the same 

strategy used for the training data in section 4.1. This network 

was used to process the Multiroom8 corpus for verification 

and this condition is labeled MX6. The results are shown in 

Table 1, which gives error rates based on the full dataset. 

Table 1: EERs for entire Multiroom8 corpus 

 MFCC RR-Mult MX6 BSW 

Enroll-Sm4 11.43 7.73 18.99 12.61 

Enroll-Sm6 14.87 5.71 15.04 15.21 

Lg4-Med5 17.06 14.29 22.86 20.25 

Lg5-Sm4 14.29 11.85 17.14 12.35 

Med3-Sm3 6.72 8.57 10.84 8.57 

Med5-Sm5 5.71 5.71 5.38 2.86 

Sm4-Lg5 14.29 11.85 17.14 12.35 

Average 12.05 9.39 15.34 12.03 

As shown in Table 1, the proposed DNN technique was 

able to reduce average speaker verification error rates by 22% 

compared with the baseline on data that contains real 

reverberation and noise. This is a key result, because all the 

other DNN methods discussed have never been tested on such 

data. This is also significant because there was no explicit 

optimization of the technique for this speaker verification task. 

The technique was tuned for speech enhancement, but is still 

capable of improving performance for SID related tasks. 

Another result from this table is that, unsurprisingly, using 

acoustically similar data between testing and training 

improved performance (RR-Mult is better than MX6). 

The trained network from MX6 was then used as the base 

for transfer learning, whereby the trained network parameters 

were frozen except for the final feedforward layers. The pre-

trained network was then trained again using ¼ of the 

Multiroom8 data, but only the final feedforward layers were 

actually learning. This condition is labeled MX6-Mult-Q1. For 

comparison, a new network was trained using only the same ¼ 

of the Multiroom8 data and this condition is labeled Mult-Q1. 

Both networks were used to process the remaining ¾ of the 

Multiroom8 data to be used for verification. Table 2 shows 

these results, as error rates for ¾ of Multiroom8. 

Table 2: EERs for ¾ Multiroom8 corpus 

 MFCC MX6-Mult-Q1 Mult-Q1 BSW 

Enroll-Sm4 10.11 8.55 11.11 11.40 

Enroll-Sm6 14.39 7.41 6.55 7.41 

Lg4-Med5 18.38 15.81 16.10 17.09 

Lg5-Sm4 11.11 11.11 11.25 11.11 

Med3-Sm3 7.41 6.70 11.11 7.55 

Med5-Sm5 4.84 7.26 7.41 3.70 

Sm4-Lg5 11.11 11.11 11.25 11.11 

Average 11.05 9.71 10.68 9.91 

As shown in Table 2, the proposed technique lowered 

average speaker verification error rates compared to the 

baseline. These results are more interesting, however, due to 

the restricted data size. Here, the emphasis of the experiment 

was on the “not enough data” problem. When training the 

network using only a small portion of the acoustically similar 

data from Multiroom8, the error is reduced only marginally 

(3% reduction). BSW performs better than this. However, with 

the use of transfer learning on Mixer 6 data supplemented by 

Multiroom8, the error is reduced by 12% compared with the 

baseline. This result supports the intuitive conclusion that 

“there’s no data like more data.” Generalization is a key 

feature of a successful neural network, so the more data that 

can be obtained for training, the better.  

5. Discussion 

In this paper, an improved DNN dereverberation technique 

based on convolutional neural networks was proposed. This 

technique was developed primarily for improved speech 

enhancement and was experimentally shown to improve 

speech quality scores more than existing methods. Then, the 

technique was extended to the task of speaker verification 

despite not being specifically developed for that purpose. In a 

series of experiments, the method was shown to be capable of 

reducing error rates for speaker verification on data that 

contained real reverberation and noise which had not been 

shown by the compared works. The experiments were also 

designed to examine the cross-corpora performance of the 

technique. A key takeaway is a common technique known as 

transfer learning can help boost performance in cases where 

there isn’t enough relevant data. The results support the 

logical conclusion that neural network performance is likely to 

improve with more training data, especially if the technique is 

further optimized for the task of speaker verification. To that 

end, our current work includes exploring modifications to the 

technique in order to specifically improve SID performance 

with and without adequate data.  
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