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Abstract

Listeners hear joy/sadness and engagement/indifference in
speech, even when linguistic content is neutral. We measured
audible emotion in spontaneous speech and related it to self-
reports of affect in response to questions, such as “Are you
hopeful?” Spontaneous speech and self-reports were both col-
lected in sessions with an interactive mobile app and used to
compare three affect measurements: self-report; listener judge-
ment; and machine score. The app adapted a widely-used mea-
sure of affective state to collect self-reported positive/negative
affect, and it engaged users in spoken interactions. Each ses-
sion elicited 11 affect self-reports and captured about 9 minutes
of speech; with 118 sessions by psychiatric patients and 227
sessions by non-clinical users. Speech recordings were evalu-
ated for arousal and valence by clinical experts and by computer
analysis of acoustic (non-linguistic) variables. The affect self-
reports were reasonably reliable (α 0.73 to 0.84). Combined af-
fect ratings from clinical-expert listeners produced reliable rat-
ings per session (α 0.75 to 0.99), and acoustic feature analysis
matched the expert ratings fairly well (0.36 < r < 0.72, mean
0.57), but neither human nor computed scores had high corre-
lation with standard affect self-reported values. These results
are discussed in relation to common methods of developing and
evaluating affect analysis.

Index Terms: positive affect, negative affect, arousal, valence,
mental health

1. Introduction
Our emotions are often evident in both what we say (the con-
tent) and how we voice it (acoustic features). Indeed, it is often
maintained that a speaker’s state can be accurately measured
from the acoustic properties of speech (e.g. [1, 2]). However,
most such studies have been conducted in controlled laboratory
settings and little is known about such speech properties when
produced in more natural settings and across different speaking
tasks. Put simply, how well can speech-based methods model
speaker states when diverse speech data are collected in real-
world settings? Also, how closely are acoustic properties of vo-
cal signals related to a person’s subjective self-reports of their
own inner mental state (i.e., their own estimates of arousal and
valence levels)? Put differently, would we expect a close re-
lationship between an individual’s self-reported emotions and
those that an external expert rater would assign by listening to a
sample of speech from that same individual?

2. Delta mental state examination
We developed an iOS app for research purposes called the delta
Mental State Examination (dMSE [3]). This telemental health
monitoring tool is designed to be remotely administered to track
changes (hence ‘delta’) in participants’ emotional, cognitive,
and psychomotor states over time. It is a tool for researching
the dynamics of mental and cognitive states using both standard
subjective assessments derived in clinical sciences and emerg-
ing objective technologies. This tracking is done by providing a
series of short engaging tasks that require participants to listen,
watch, speak, and touch to interact with the smartdevice, and
thereby collectively assesses cognition, motor skill, and lan-
guage. Additionally, several questions prompt participants to
self-report on their emotional well-being by moving a slider to
indicate their current level of positive and negative affect. We
report data from the alpha version of this app that took partici-
pants on average 28 minutes to complete a daily session.

3. Self-reported and observed affect
One frequently used tool for assessing general affective states
is the Positive and Negative Affect Schedule (PANAS) [4, 5]
which measures Positive Affect (PA) and Negative Affect (NA).
PA and NA are two primary dimensions of mood and are rela-
tively independent. “NA - but not PA - is related to self-reported
stress and (poor) coping, health complaints, and frequency of
unpleasant events. In contrast, PA - but not NA - is related to
social activity and satisfaction and to the frequency of pleasant
events” [4].

In the dMSE, we included 15 digital sliders coded on a scale
from 0 to 100 to let participants self-report their affect states at
the present moment, with increasing scores reflecting increasing
intensity of the states. Seven PA slider questions prompted self-
evaluation as to how the participant felt in terms of hopefulness,
calmness, appreciation, strength, ability to concentrate, happi-
ness, and levels of energy. Eight NA slider questions prompted
self-reflection regarding levels of anxiety, frustration, fear, sad-
ness, stress, anger, pain, and feelings of helplessness. These
slider questions were derived from [4, Appendix]. At the be-
ginning of each dMSE session, participants were asked to re-
spond to 11 PA and NA sliders (drawn from the 15), of which at
least four concerned positive affect and at least four concerned
negative affect. On average, five PA and six NA sliders were
presented per session. The final self-reported PA (or NA) value
per session is the average of the PA (or NA) slider response
values. These values represent participants’ self-reported emo-
tional state.
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Note that our self-reported affect measures are signifi-
cantly different from some previous reports of self-rated or self-
reported emotion ratings from speech [6, 7]. In [6], participants
were asked to rate their own speech, and in [7], participants
were asked to recall what they were feeling when they produced
their speech. One early study [8] had psychologists repeat neu-
tral material as if in a particular affective state.

Arousal (degree of excitement) and valence (positive vs.
negative) are two key components of emotion (e.g. [9]),
and many human emotions can be modeled within these two-
dimensions. Voice characteristics and others (e.g. facial ex-
pressions, hand gestures, posture, etc.) may reveal emotions so
that they are observable. After the self-reported sliders in the
dMSE, a series of structured speech interactions were used to
record participants’ non-acted, spontaneous speech, which may
unobtrusively reveal participants’ emotions.

Research to automatically recognize emotion from speech
signals is ongoing [1, 2, 7, 10, 11]. Previous research on auto-
matic measurement of continuous-valued affective arousal and
valence in speech (e.g. [1, 2]). [1, 2] has shown that arousal in
speech can be measured reliably, but not valence.

4. Elicited speech data
The dMSE app elicited on average 8.9 minutes of speech data
per session for the 345 sessions analyzed in this paper. Table 1
lists the speech interaction types.

Table 1: The structured speech interaction types per session. n
is the number of different items per type presented in a session.

Type n Description

greeting 7 Greeting questions, e.g. What’s new? What’s on your
mind?

picture 4 Describe what is happening in a picture.
video 3 Describe what is happening in a silent video.

talk 2 Free talk on a topic, e.g. How would you boil an egg?
How has television changed family life?

pataka 4
Rapid repetitions of a single syllable, /pa/, /ta/ or
/ka/ (alternating motion rate) or a syllable sequence,
/pataka/ (sequential motion rate) [12, 13].

retell 2 Hear a story, then retell it immediately in detail. (Sto-
ries about 72 words (std = 4.6)).

re-retell 1
Retell the story you previously heard. (This appears
a few item types (about 17 minutes) later in the same
session).

repeat 9 Repeat the sentence you just heard.

Stroop test 1 Words (including color names) appear in different col-
ors. Say the print color as fast as possible.

suggestion 4 Request suggestions, e.g. What would make this app
better?

5. Speech processing and machine learning
We explored the relationship between affect apparent in speech
and self-reported affect states. Apparent affect is observed by
expert human raters listening to speech recordings, and affect
states are those self-reported using sliders at the beginning of
the sessions.

5.1. openSMILE speech signal features

The openSMILE audio feature extractor [14] is the state-of-the-
art open source package that can generate a lot of low-level fea-
tures based on speech signal processing (e.g. energy, loudness,
MFCC, PLP, F0, probability of voicing, voice quality: jitter and
shimmer, formants: F1, F2, F3, F4, etc., harmonics-to-noise ra-
tio, etc.) and data processing (means, extremes, moments, seg-
ments, peaks, linear and quadratic regression, percentiles, dura-

tions, onsets, etc.) for voice research, affective computing, and
many other applications. The measured parameters consider
subglottal pressure, transglottal airflow, and vocal fold vibra-
tion, include parameters in the time domain (e.g. speech rate),
the frequency domain (e.g. fundamental frequency or formant
frequencies), the amplitude domain (e.g. intensity or energy),
and the spectral distribution domain (e.g. relative energy in dif-
ferent frequency bands). We used the 2013 COMPARE feature
set [11] that contains 6,373 features.

5.2. Machine learning method

Support Vector Regression (SVR) is a machine learning method
that is commonly used and well-suited to emotion estimation
[1, 2]. SVR is good at predicting targets when there are a lot
of continuous predictor (independent) variables. It can easily
be used to check if prototype machine learning ideas will work.
We used the libSVM [15] in Weka [16]: ε-SVR with a radial
basis function (RBF) kernel, degree = 3, cost = 10, eps = 0.2,
loss = 0.1, normalize = true. Since our main interest was to see
how relationships change under different scenarios, we did not
tune these parameters further.

Results are reported from a 10-fold cross-validation
scheme, in which all model parameters are learned using 9 of 10
data subsets for training, and accumulating results on the 10th
(left-out) subset for estimating performance. We made sure that
the same participant did not appear across different sets. To re-
move random effects, the reported results are the average of 10
random trials when applicable.

6. Experimental results
6.1. Data

During the data collection stage, the participants self-
administered and completed a dMSE session on iOS devices ev-
ery day for 3 to 6 days continuously. In 2016, we collected 227
valid sessions from 79 undergraduates enrolled in psychology
courses at Louisiana State University, yielding 2.87 sessions per
student. Students participated in return for extra course credit.
We collected 118 valid sessions from 25 stable clinical partic-
ipants with a range of serious mental illnesses, yielding 4.72
sessions per participant. More details about these clinical par-
ticipants can be found in [17]. All the speech recordings were
natural reactions: non-acted, spontaneous speech. They were
recorded at 16 kHz and 16 bit resolution. Compared with previ-
ous studies based on speech data generated by acting, the vari-
ances of the different states for analysis here is relatively small.
This paper focuses on these two different groups of populations.
Here data are analyzed per session, rather than per participant.

6.2. Self-reported affect reliabilities

We checked the internal consistency reliabilities (Cronbach’s
α [18]) of the self-reported PA and NA, and their intercorre-
lations. When reporting results, we divide participants into two
groups: Normative (undergraduate students), and Clinical, as
in Table 2. Although we used a very different format (an iOS
device with audio prompts and sliders compared with the tradi-
tional PANAS, which uses paper and pencil with a five-point
response format: from not-at-all to quite-a-lot/extremely) to
present the PA and NA questions, and we included only half the
number of traditionally presented items [4], our α reliabilities
were nonetheless consistent with earlier findings [4, Table 2].
Note that intercorrelations between PA and NA are fairly high
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in our sample. Still, the internal consistency reliabilities are in
the ‘good’ range for both PA and NA in the clinical data sets,
and in the ‘acceptable’ range for both PA and NA in the norma-
tive data set. The higher reliabilities in the clinical data set may
be caused by wider response ranges in that population (standard
deviation: 24.6 vs 17.3 for PA and 28.4 vs. 17.6 for NA). Test-
retest or intra-participant reliabilities in a one-day retest interval
in Table 2 are comparable to similar data reported in [4, Table
3]. These reliabilities exhibit a significant level of stability of
the self-reported PA and NA, and at the same time should be
sensitive to fluctuations in mood, which supports the use of PA
and NA self-reports as targets for machine prediction.

Table 2: The internal consistency reliabilities (Cronbach’s α)
of the self-reported PA and NA, and their intercorrelations.

Group n α reliabilities Intercorrelations
PA NA

Normative 227 0.73 0.79 -0.56
Clinical 118 0.80 0.84 -0.49

Table 3: The test-retest reliabilities of the self-reported PA and
NA (one day retest interval).

Group The number of pairs Test-retest reliabilities
PA NA

Normative 148 0.66 0.47
Clinical 81 0.58 0.66

6.3. Observed affect reliabilities

The selected speech responses were rated by different human
raters for their Arousal (or Valence) on 7 categories, with
‘0’ representing silence, insufficient sample, or noncompli-
ant due to a non-clinical distraction, ‘1’ representing clini-
cally/extremely low (or negative), and ‘6’ representing clini-
cally/extremely high (or positive). Ratings of ‘0’ were excluded
from data analysis. The detailed rating rubrics were designed by
clinical professionals. The raters were four clinical profession-
als and five graduate students majoring in clinical psychology.
Due to restrictions associated with schedules and cost, only a
limited number of responses were rated.

From a sample of sessions from the normative group, 28
sessions were selected using stratified sampling such that ses-
sions would be spread across the range of response styles, such
as self-reported slider values and total number of words spoken.
All speech responses of personal greeting questions, describing
still pictures, describing silent videos, free talk, retell a story,
retell the story a second time, and suggestions for improving
the app were rated on average by four different raters for each
rubric (arousal and valence). So each session has about 23 X
4 ratings per rubric (repeat responses were not rated). The av-
erage of these values per session per rubric provides reliable
estimates of observed affect. The correlation between the av-
eraged arousal and valence at the session level is 0.94. This
may imply that for this normative population the difference be-
tween arousal and valence is not so obvious. After averaging,
the ranges for arousal and valence were narrowed down to [2.7,
4.2] and [3.0, 4.0].

Sampling of clinical participants occurred at two different
time periods. There are 55 sessions (17 participants) collected
in the first period with responses from describing silent videos
and free talk which were rated for arousal and valence. There

are on average 14 ratings per session per rubric. These could be
used to create stable estimates of arousal (Cronbach’s α = 0.91)
and valence (Cronbach’s α = 0.85) for these sessions. The cor-
relation between averaged arousal and valence in the session
level is 0.66. After averaging, the ranges for arousal and va-
lence were narrowed down to [2.0, 4.3] and [2.5, 4.3]. This
spread is wider than the normative population. We noted it as
ClinicalGroup1.

Later, two clinical professionals rated all clinical partici-
pants’ free-talk responses for their arousal and valence. Their
correlations at the response level: r(Arousal) = 0.64 (n = 201),
r(Valence) = 0.43 (n = 198). The correlation between averaged
arousal and valence is 0.50 (n = 213) at the response level, and
0.62 (n = 116) at the session level. After averaging, the ranges
for arousal and valence were [1.0, 5.0] and [2.0, 4.5]. They are
significantly wider than the previous two sets. We noted it as
ClinicalGroup2. We used the average rating per response from
these two raters as the prediction targets.

6.4. Self-reported affect vs. human ratings

We reported the correlations between self-reported affect and
the observed arousal or valence ratings from speech by human
raters in Table 4. They are generally low, ranging from -0.24 to
0.21. These correlation values indicate relative independence:
self-reported affect seems independent of apparent affect ob-
served in varied samples of speech. This finding is consistent
with the result in [6, 7] although their self-reported emotion rat-
ings were directly tied to the speech materials produced. In the
three data sets, there is a mismatch between apparent (heard)
emotions and self-reported emotions. Note that the session-
level PA and NA scores in Table 4 are very reliable: arousal
reliabilities in the three participant groups are 0.99, 0.91, 0.88.
For valence, the score reliabilities are 0.98, 0.85, and 0.75.

Table 4: The correlations between the self-reported affect and
the observed affect from speech by human raters.

Group n Arousal Valence
PA NA PA NA

Normative 28 0.08 0.21 0.15 0.15
ClinicalGroup1 55 0.06 0.08 0.14 -0.24
ClinicalGroup2 116 -0.01 0.07 0.02 0.02

6.5. Machine prediction results

6.5.1. Self-reported affect vs. speech features

We used the average of the PA (or NA) slider response values
in a session as the prediction target for the responses of the ses-
sion. All speech responses listed in Table 1 were used to predict
the targets. We reported the correlations at the session level be-
tween the targets and the averaged predictions in Table 5. We
checked the correlations between the targets and each individual
feature and reported the best ones. These best values provide an
indication of how strong these speech features are when they
are used to predict the targets. The weak correlations in Table
5 further confirm the conclusions we arrived at in Subsection
6.4. When using all the different types of speech responses in
combination (Table 1), the machine methods cannot predict the
self-reported affect from the speech signal alone. We observe
that in Table 5, overall, the clinical data set has better correla-
tions than the normative one.

Instead of using all speech responses together to predict tar-
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Table 5: Using all speech responses together in a session to
predict targets, correlations between self-reported affect and
one best individual openSMILE speech feature; correlations
between self-reported affect and SVR predictions using openS-
MILE features.

Group n Prediction method PA NA

Normative 227 A best feature 0.14 0.14
SVR 0.05 0.11

Clinical 118 A best feature 0.22 0.20
SVR 0.26 0.29

gets, we checked each type to see if the responses from a cer-
tain type may predict the targets better. The results are reported
in Table 6. For the normative set, all these correlations are in
the negligible range. It is consistent with what we observed
when using all speech responses together in a session to pre-
dict. Interestingly, for the clinical set the correlations become
moderate when analysing by individual types. Specifically, the
self-reported NA is easier to predict than the self-reported PA.
Speech data from two types (pataka, the Stroop test) that did
not produce meaningful linguistic content except for a few fixed
syllables, such as the task pataka was used to measure alternat-
ing motion rate and sequential motion rate [12, 13], can produce
moderate correlations when they were used to predict the self-
reported NA.

In Table 5, the correlations from the best single individual
feature for PA and NA when mixing different type responses
together are significantly lower than the correlations obtained
when treating different type responses separately. It could im-
ply that treating different type responses separately may be a
superior method.

Table 6: Predicting with speech responses from single task
types. Correlations between self-reported affect and single
best individual openSMILE feature; correlations between self-
reported affect and SVR predictions using openSMILE features

Type Target Normative, n=227 Clinical, n=118
A feature SVR A feature SVR

greeting PA 0.19 0.22 0.25 0.40
NA 0.16 0.29 0.24 0.46

picture PA 0.24 0.29 0.35 0.41
NA 0.18 0.19 0.32 0.45

video PA 0.23 0.16 0.29 0.29
NA 0.19 0.18 0.30 0.44

talk PA 0.20 0.26 0.36 0.32
NA 0.21 0.22 0.32 0.41

pataka PA 0.24 0.09 0.34 0.30
NA 0.19 0.10 0.34 0.41

retell PA 0.23 0.27 0.41 0.42
NA 0.18 0.27 0.35 0.41

re-retell PA 0.27 0.22 0.41 0.31
NA 0.30 0.15 0.36 0.44

repeat PA 0.21 0.09 0.27 0.34
NA 0.20 0.17 0.25 0.37

Stroop test PA 0.25 0.12 0.35 0.43
NA 0.23 0.14 0.35 0.47

suggestion PA 0.17 0.27 0.27 0.23
NA 0.19 0.16 0.27 0.40

6.5.2. Observed affect vs. speech features

We report our machine learning results for arousal and valence
in Table 7. Valence was significantly more difficult to assess
than arousal by machine methods. It could be because the vari-
ance of human valence ratings is significantly smaller. Human
raters have difficulty judging valence from speech alone. The
higher correlation in valence for the normative data set could be
a result of human ratings not distinguishing very well arousal
and valence (as evident by the intercorrelation of 0.94). A lit-

tle lower values in ClinicalGroup1 could be because the rating
distribution did not spread sufficiently. A better spread in Clini-
calGroup2 shows that we can assess arousal in the clinical data
set quite reliably. The assessment for valence can provide valu-
able information also.

Table 7: The correlations between the machine predictions and
human observed ratings for arousal and valence in the session
level using 10-fold cross validation.

Group n Arousal Valence
Normative 28 0.70 0.67

ClinicalGroup1 55 0.54 0.36
ClinicalGroup2 116 0.72 0.43

We cross-validated the trained arousal and valence models,
and so we trained a model on the normative data set and tested
on the clinical data set, and vice versa. Results are reported in
Table 8. These reasonable correlations further confirmed that
machine modeling observed affect from speech is viable. The
correlation 0.19 could be caused by a conflation of arousal and
valence in the normative data or by a limited score range in the
valence ratings for the normative data set.

Table 8: Correlations between machine predictions and human
observed ratings for arousal and valence at session level using
cross-domain validation.

Training set Test set Arousal Valence
Normative ClinicalGroup2 0.75 0.19

ClinicalGroup2 Normative 0.61 0.65

7. Result summary and conclusions
In real life, emotion is measurable in speech, behavior, subjec-
tive states and physiology, with measures showing modest con-
vergence [19]. Self-reports of positive and negative affect states
as measured in the dMSE mobile app provided two consistent
and stable dimensions of affect, which show statistical proper-
ties very similar to those reported for the original instrument
(PANAS [4]). Unlike many speech-affect research studies, in
this data set the self-reports and speech data were collected in
close time proximity. However, arousal and valence observed
in speech still seems to reflect independent dimensions of emo-
tions; which may pose a methodological issue when self-reports
are the target of an acoustic-feature-based affect analysis. Even
when we derived very reliable person-level measures of ob-
served affect, the predictive relation to self-reported affect was
slight, but machine scoring could match the listener data on ap-
parent affect in the speech.

Analysis of both normative and clinical data sets suggests
that arousal can be assessed quite reliably via speech, but va-
lence is less evident in speech acoustics. Although the states
from self-reported measures of affect may be difficult to observe
via speech in the normative sample, we found evidence that
affect is (not surprisingly) reflected in the speech of a clinical
population, especially for negative affect states. Cross-domain
validation results of the observed affect concludes that machine
modeling of observed affect from speech is viable.
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