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Abstract
This article focuses on speaker recognition using speech ac-
quired using a single distant or far-field microphone in an in-
doors environment. This study differs from the majority of
speaker recognition research, which focuses on speech acquisi-
tion over short distances, such as when using a telephone hand-
set or mobile device or far-field microphone arrays, for which
beamforming can enhance distant speech signals. We use two
large-scale corpora collected by retransmitting speech data in
reverberant environments with multiple microphones placed at
different distances. We first characterize three different speaker
recognition systems ranging from a traditional universal back-
ground model (UBM) i-vector system to a state-of-the-art deep
neural network (DNN) speaker embedding system with a prob-
abilistic linear discriminant analysis (PLDA) back-end. We
then assess the impact of microphone distance and placement,
background noise, and loudspeaker orientation on the perfor-
mance of speaker recognition system for distant speech data.
We observe that the recently introduced DNN speaker embed-
ding based systems are far more robust compared to i-vector
based systems, providing a significant relative improvement of
upto 54% over the baseline UBM i-vector system, and 45.5%
over prior DNN-based speaker recognition technology.
Index Terms: Speaker recognition, speaker embeddings, dis-
tant speech, reverberation

1. Introduction
Automatic speaker recognition systems measure the similarity
between an unknown voice and voices previously enrolled in
the system. The performance of automatic speaker recognition
systems can degrade significantly when a mismatch exists be-
tween the system training, speaker enrollment, and test condi-
tions. These mismatches are introduced by a number of factors,
such as background noise; transmission channel; codecs; room
reverberation; vocal effort; language; emotions; etc. [1, 2, 3].
This study focuses in particular on mismatches caused by dis-
tant or far-field speech acquired from a single microphone in the
context of speaker recognition.

Automatic speaker recognition from distant speech is par-
ticularly challenging due to the effects of reverberation. Re-
verberation affects the spectro-temporal characteristics of the
speech signal. In a reverberant environment, sound waves ar-
rive at the microphone via a direct path, by multiple paths, and
after reflecting off from surrounding walls and objects. Early
reflections (i.e., reflections arriving within 50–80 ms after di-
rect sound) tend to build up a level louder than the direct sound,
which results in internal smearing known as the self-masking
effect. The echoes arriving after early reflections are called late
reflections. Late reflections tend to smear the direct sound over
time and mask succeeding sounds. This phenomenon is referred

to as the overlap-masking effect [4, 5]. These effects blur the
details of the speech spectrum, which, in turn, hurts the perfor-
mance of speaker recognition systems.

The field of automatic speech recognition has advanced
greatly for distant or far-field speech conditions especially be-
cause of the CHiME speech separation challenge series [6], RE-
VERB challenge [7], and IARPA Automatic Speech Recog-
nition in Reverberant Environment (ASpIRE) challenge [8].
Moreover, the commercial success of digital personal assis-
tants has also contributed to the growth of far-field ASR [9].
But research in the speaker recognition community has tended
to focus on distant speech acquired in relatively clean condi-
tions, such as in the NIST speaker recognition evaluation 2008
dataset, or artificially reverberated speech data. Lacking in
the research is an analysis of speaker recognition using dis-
tant speech in realistic scenarios that include background noises
such as a television, music, or other people talking in the back-
ground.

Past literature has reported several approaches to alleviate
the impact of distant speech on speaker recognition systems.
In [10, 11], using novel, robust acoustic features, such as modu-
lation spectral features and mean Hilbert envelop coefficients
(MHEC), was proposed. Multi-style training methods were
used in [12, 13, 14] to minimize the effect of reverberation mis-
match. Reverberation compensation at the score level was pro-
posed in [2]. Multichannel signal-processing techniques (e.g.,
microphone arrays) were employed to improve the robustness
of speaker identification (SID) systems by dereverberating the
signal in [15, 16, 17, 18].

Two major shortcomings befall existing work on speaker
recognition under reverberant conditions. First, the majority of
studies use software simulations to generate data representing
reverberant conditions [10], and those studies using actual data
employ very few speakers [2], which results in limited signifi-
cance in subsequent analysis. Second, multichannel or micro-
phone array based solutions are inapplicable when only single-
channel or prerecorded data is available [16].

The main contributions of this work are as follows. First,
the distant speech datasets used in this work are collected in ac-
tual reverberant environments as opposed to software simulated
data. Second, this study utilizes a large number of speakers us-
ing two different datasets in a variety of real-world conditions.
Third, we perform speaker recognition using a single micro-
phone instead of a microphone array. Fourth, we aim to provide
a comparison of three different speaker recognition systems and
assess the impact of microphone distance and placement, back-
ground noise, and loudspeaker orientation. Also, to the best of
our knowledge, this study is the first work to show the robust-
ness of a DNN speaker embeddings based speaker recognition
system for distant speech data.
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Figure 1: Typical microphone layout in a room of the SRI Dis-
tant Speech Collect.

2. Corpora
This section describes the distant speech corpora used in this
work to evaluate the performance of speaker recognition sys-
tems. We use two different data sets: (i) SRI Distant Speech
Collect and (ii) Voices Obscured in Complex Environments Set-
tings (VOICES). These datasets were collected by taking audio
files from existing corpora based on close-talking speech and
then retransmitting the audio via a high-quality loudspeaker in
a number of different rooms. This method not only serves as a
close representation of real-world distant conditions compared
to software simulations, but it is also cost-effective relative to
recruiting speakers for original voice recordings.

2.1. SRI Distant Speech Collect Dataset

The first set of data, the SRI Distant Speech Collect dataset, was
collected by playing audio out of a loudspeaker and recorded
using 11 microphone channels at once, placed at different dis-
tances inside the room. Of these 11 microphones, 7 were om-
nidirectional lapel condenser microphones (AKG C417L), and
the remaining 4 were cardioid dynamic studio microphones
(SHURE SM58). Three pairs of lapel and studio microphones
were placed in front of the speaker (two on the table and one in
the far corner of the room) whereas one pair of lapel and studio
microphones were placed behind the speaker (in the corner of
the room). The remaining three microphones were positioned
under the table, mounted on the ceiling, and placed inside a
small box on the ceiling, respectively. The window blinds in
the room were kept up to maximize reverberation while record-
ing the data. The location of microphone placements in a room
is shown in Figure 1.

This data was recorded in three different rooms with car-
peted floor, and their dimensions and characteristics are sum-
marized in Table 1. The data was collected for research in the
area of speaker recognition, language recognition, and keyword
spotting. This data is not publicly available as of now.

The retransmission data for speaker recognition was
sourced from the Forensic Voice Comparison (FVC)
dataset [19], which is comprised of Australian English

Table 1: Dimensions and characteristics of rooms for SRI Dis-
tant Speech Collect dataset.

Room Dimensions (in) Room Characteristics

Room 1 164x135x107 Normal office furniture
Room 2 146x107x107 Reverberant walls and ceiling
Room 3 225x158x109 HVAC noise, long windows

speakers. A total of 197 speakers were sub-selected from a
total of 552 speakers. The source data was collected using
a close-talking, head-mounted microphone at a sampling
frequency of 16 kHz.

2.2. Voices Obscured in Complex Environment Settings
(VOICES) Dataset

Voices Obscured in Complex Environments Settings (VOICES)
is a large dataset freely available to the public for research and
was collected along the lines of SRI Distant Speech Collect
but with several additional variations during speech acquisi-
tion. It has three different background noises and a speaker
rotation mimicking human head movement. It was collected
to foster research in the area of automatic speech recognition
(ASR), speaker recognition, speech activity detection (SAD),
and speech enhancement.

A comparison of the SRI Distant Speech Collect dataset
and the VOICES dataset across a number of different parame-
ters is summarized in Table 2. The details related to the data-
collection protocols and availability of VOICES dataset can be
found in [20]. Note that the VOICES dataset shares rooms 2
and 3 with SRI Distant Speech Collect.

Table 2: Comparison of SRI Distant Speech Collect and
VOICES datasets across different parameters.

SRI Distant VOICES

Number of Speakers 197 300
Number of Mics 11 12
Number of Rooms 3 2
Source Dataset FVC LibriSpeech
Speech Type Conversation Read
Background Noise No Babble, Music, TV
Loudspeaker Orientation No 0◦ to 180◦
Freely available No Yes

3. Speaker Recognition Systems
In this section, we describe the speaker recognition systems de-
veloped for our experiments. We use three different speaker
recognition systems, which include a traditional UBM i-vector
based system, a hybrid alignment framework i-vector system
based on DNN bottleneck features [21], and a state-of-the-art
DNN speaker embedding based system [22, 23]. These systems
use a probabilistic linear discriminant analysis (PLDA) back-
end classifier to compute the speaker-similarity scores.

All three systems use DNN-based speech activity detec-
tion (SAD) with two hidden layers containing 500 and 1000
nodes, respectively. The SAD DNN is trained using 20-
dimensional Mel-Frequency Cepstral Coefficients (MFCCs)
features, stacked with 31 frames. The MFCCs are mean and
variance normalized over a 201-frame window before training
the SAD DNN. The threshold for selecting the speech versus
non-speech frames was 0.5 in training and evaluation, except
during speaker embedding extractor DNN training, which used
a threshold of -1.5 based on the findings of [23].

3.1. UBM I-Vector System

This is a traditional i-vector system [24], which uses 20-
dimensional MFCCs with a frame length of 25 ms and a step
size of 10 ms that are mean and variance normalized over a slid-
ing window of three seconds. The MFCCs are contextualized
with deltas and double deltas to create a 60-dimensional feature
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vector. The universal background model (UBM) is a gender-
independent, 2048-component, diagonal-covariance Gaussian
mixture model (GMM). This system uses a 400-dimensional i-
vector extractor. For training of UBM and i-vector extractor,
we used the original PRISM training list, including degrada-
tions [25].

3.2. Hybrid Aligned Bottleneck I-Vector System

The hybrid alignment framework is based on DNN bottle-
neck features and was developed to improve calibration of
DNN-based speaker recognition systems across varying con-
ditions [21]. The framework uses two sets of features: a first
set of features to determine the frame alignments (zero-order
statistics) in the Baum-Welch statistics calculation and a second
set of features for calculating first-order statistics. This process
resulted in a more robustly calibrated DNN-based system com-
pared to using concatenated MFCC and bottleneck features, by
restricting the use of bottleneck features only to the alignment
of standard acoustic features during i-vector extraction.

For this system, we use a DNN BN extractor trained
from 20-dimensional power-normalized cepstral coefficients
(PNCC) [26] contextualized with principal component analy-
sis discrete cosine transform (pcaDCT) [27] with a window of
15 frames to create 90-dimensional inputs to the DNN that are
then mean and variance normalized using a sliding window of
three seconds. The DNN is trained to discriminate 1933 senones
using Fisher and Switchboard telephone data and consists of
five layers of 1200 nodes, except the fourth hidden layer, which
has 80 nodes and forms the bottleneck extraction layer. The
first-order features, aligned with the BN features and 2048-
component, diagonal-covariance UBM, are MFCCs of 20 di-
mensions also contextualized with pcaDCT using a 15-frame
window with an output of 60 dimensions. In all cases, the
principal component analysis (PCA) transform for pcaDCT is
learned using a subset of the DNN training data. For training
the UBM and i-vector extractors, we used the original PRISM
training list, including degradations [25]. This system also ex-
tracts 400-dimensional i-vectors.

3.3. DNN Speaker Embedding System

In recent years, speaker discriminative training of DNNs
has been used to extract a low-dimensional representation of
speaker characteristics from one of the DNN’s hidden layers.
This low-dimensional representation, rich in speaker informa-
tion, is referred to as the speaker embedding. These speaker em-
beddings replace the i-vectors used in the above systems. DNN-
based speaker embeddings have resulted in new state-of-the-art
text-independent speaker recognition technology because of its
ability to generalize to unseen conditions [28, 22].

For training the speaker embedding extractor, we used
52,456 audio files sourced from the non-degraded subset of
PRISM training lists[25]. We then augmented this data with
four copies of four different degradation types including a ran-
dom selection of audio compression; a random selection of in-
strumental music at a 5 dB signal-to-noise (SNR) ratio; a ran-
dom selection of noises at a 5 dB SNR; and a random selec-
tion of reverberated signals with low reverberation. This aug-
mentation resulted in a total of 891,752 segments from 3,296
speakers for training the embeddings extractor. More details on
this system are found in [23], where the system is denoted as
raw+CNLRMx4.

3.4. Probabilistic Linear Discriminant Analysis (PLDA)
Classifier

We use gender-independent probabilistic linear discriminant
analysis (PLDA) [29] to compute the scores of speaker recog-
nition systems. The fixed-dimensional speaker representation
from each of these systems (either i-vector or speaker embed-
ding) were further transformed using linear discriminant anal-
ysis (LDA) to 200 dimensions followed by length normaliza-
tion and mean centering [30]. For training the PLDA model
and LDA, we used the full PRISM training lists, which include
noise and reverb degradations. Additional transcoded data was
added to this PLDA training data [3].

One thing to note here is that the i-vector extractor
(UBM/T) are trained to original PRISM lists as it doesn’t re-
spond well to augmentation [22] whereas DNN embedding ex-
tractor is trained on raw PRISM lists with 16x augmentation.
Our assumption is that each of the i-vector systems have been
developed over a long period of time with different types of
training data and we use what is probably the most common
training set collection for these according to literature from nu-
merous research teams. This does not mean that it is the optimal
training set, but rather a set that the community has settled on
over years of i-vector research.

4. Experimental Evaluation
In this section, we benchmark each of the described speaker
recognition systems on the SRI Distant Speech Collect and
VOICES data sets. We also analyze the impact of microphone
distance and placement, background noise, and loudspeaker ori-
entation on speaker recognition system performance. We report
our results in terms of equal error rates (EER) in percentage.

4.1. Evaluation Protocol

Audio files from the SRI Distant Speech Collect data set were
cut into 20-second chunks based on SAD output and were then
used in enrollment and verification. We performed enrollment
on a single 20-second cut of audio from the source data and
verified for different microphones placed at different positions
on a single 20-second cut. For the VOICES dataset, the enroll-
ment/test segments were 14-seconds long and speech dense.

4.2. Benchmarking Results

First, we present our benchmarking results for different rooms
from the SRI Distant Speech Collect and VOICES data sets on
the UBM-IV, Hybrid-IV, and speaker embeddings systems. We
report a single measure of Equal-Error Rate (EER) per room
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Figure 2: Benchmarking of different speaker recognition sys-
tems on the SRI Distant Speech Collect and VOICES corpora.
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and per corpus pooled the trials from all microphones prior to
calculating the EER. Enrollment was performed on the source
data, and testing on the distant speech. While the VOICES data
set contains various distractor sounds, in this section we only re-
port on the subset of the data that contains no added background
noise. These results are summarized in Fig. 2.

We observe that the speaker embedding-based system con-
sistently outperformed the i-vector-based system by a consider-
able margin in reverberant conditions as well as for the source
datasets. The relative gain over the baseline system ranged from
47% to 54% for SRI Distant Speech Collect for different rooms.

4.3. Impact of Microphone Distance and Placement

Next, we present the results on the impact of microphone dis-
tance and placement from the loudspeaker in Table 3. We ob-
serve that in this case, the speaker embeddings based system
also outperformed the i-vector based system by a large margin.
The equal error rates increased with distance. Noteworthy is the
significant challenge that hidden microphones, such as under-
the-table microphones, pose for speaker recognition systems.

Table 3: Impact of microphone position on the performance of
three different speaker recognition systems in terms of EER (%).

Mics Table-center Hidden Table-far Ceiling Behind Far-corner

SRI Distant Room 1

UBM-IV 5.8 10.9 6.2 9.5 11.3 9.6
Hybridiv 3.7 9.1 4.9 7.7 8.9 6.7
Embedding 2.3 5.8 2.8 4.8 6.4 4.4

SRI Distant Room 2

UBM-IV 8.8 10.5 9.1 11.0 12.1 12.1
Hybridiv 7.3 9.1 7.3 9.3 10.1 10.5
Embedding 4.0 5.4 3.7 5.0 5.5 5.2

SRI Distant Room 3

UBM-IV 5.9 11.1 8.7 9.4 11.2 10.6
Hybridiv 4.9 8.4 6.7 7.7 8.7 8.7
Embedding 2.5 5.0 3.8 4.2 5.7 4.9

VOICES Room 1

UBM-IV 10.7 17.5 13.0 16.2 14.9 15.1
Hybridiv 8.6 15.1 11.5 13.1 12.4 12.3
Embedding 5.0 9.9 6.7 8.5 8.2 7.2

VOICES Room 2

UBM-IV 10.9 16.3 13.1 13.2 14.7 16.6
Hybridiv 9.6 13.6 11.2 11.5 12.4 13.6
Embedding 5.4 8.6 6.3 6.8 7.6 8.3

4.4. Impact of Background Noise

In this section, we study the influence of background noises
(i.e. ”distractors”) of different types on speaker recognition sys-
tems using the VOICES database. In order to mimic a realistic
test case, we enroll speakers using a recording from the close
Lapel microphone (Table, center) in room 1 with no distractor
noise. The test segments originate from all microphones and
were recorded with different types of background noise.

The results shown in Table 4 reflect the impact on the EER
of various types of distractors on the three SID systems. We
observe that all three systems struggle most with the Babble
noise. Perhaps because it is very speech-like, but also perhaps
because Babble was the only distractor played out of 3 separate
sources while music and television were played out of a single
source only. In terms of robustness to distractors, the embed-
dings system remains the clear winner in terms of Equal-Error

Rate over the two other baseline systems. Interestingly though,
the relative difference between the best and second-best system
decreases from 42% with no distractors to 37% and 38% with
Television and Music, to only 34% with Babble.

Table 4: Impact of room distractor on the performance of three
different speaker recognition systems in terms of EER (%). Each
condition has above 18k/2.8M target/impostor trials.

Distractor None Television Music Babble

UBM-IV 17.2 19.3 19.2 20.9
Hybridiv 14.9 16.7 17.2 18.1

Embedding 8.6 10.5 10.5 11.9

4.5. Impact of Loudspeaker Orientation

Because the speaker may not always be facing the microphone
in distant recordings, it is important to assess the impact of
speaker orientation on the performance of speaker identification
systems. In this section, we study the influence of loudspeaker
orientation using the VOICES database. We picked four Lapel
microphones (table center, table far, corner far, under table) po-
sitioned roughly in a straight line from the default loudspeaker
position (90 degrees). In order to isolate the ”orientation” vari-
able, we design trials to have enrollment and test samples from
the same microphone and the same room (room 1), with no dis-
tractors sounds. We then design three enrollment conditions and
three test conditions using three ranges of loudspeaker orienta-
tion: Left (0-20 degrees), Straight (80-100 degrees) and Right
(160-180 degrees). One thing to note is that since different files
are used for enrollment and testing in the experiments on the
VOICES database, symmetrical enrollment/test conditions (e.g.
left/right vs right/left) may give different results even though
speaker verification is a symmetrical task.

Results shown in Table 5 show that a perpendicular loud-
speaker orientation to the microphone of interest induces a de-
gree of distortion that challenges even the most robust embed-
dings SID systems, with a pooled EER going from 8.5% to
above 13% in some cases. Also, it is interesting to note that
in this case obtaining a ”matched” enrollment to the test sam-
ple, even from the same microphone in the same room doesn’t
help, e.g. it is better to enroll with ”Straight” when testing on
”Left” or ”Right” even if the test orientation and microphone
are known.

Table 5: Impact of loudspeaker orientation on the performance
of the embeddings SID system in terms of EER (%). Each con-
dition has above 1k/150k target/impostor trials.

Enroll
Test Left Straight Right

Left 13.3 10.3 13.0
Straight 10.1 8.5 10.9
Right 10.7 9.7 11.3

5. Conclusions
We investigated the impact of distant speech on the performance
of speaker recognition systems. The corpora used in this work
was collected in actual reverberant rooms rather created by soft-
ware simulations. We benchmarked the performance of three
speaker recognition systems on two different datasets. We ob-
served that speaker embedding based speaker recognition sys-
tems gave very impressive gains over i-vector based systems.
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