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Abstract
Head-nods and turn-taking both significantly contribute conver-
sational dynamics in dyadic interactions. Timely prediction and
use of these events is quite valuable for dialog management sys-
tems in human-robot interaction. In this study, we present an
audio-visual prediction framework for the head-nod and turn-
taking events that can also be utilized in real-time systems. Pre-
diction systems based on Support Vector Machines (SVM) and
Long Short-Term Memory Recurrent Neural Networks (LSTM-
RNN) are trained on human-human conversational data. Uni-
modal and multi-modal classification performances of head-nod
and turn-taking events are reported over the IEMOCAP dataset.
Index Terms: head-nod, turn-taking, social signals, event pre-
diction, dyadic conversations, human-robot interaction.

1. Introduction
Recent intelligent human-computer interaction (HCI) literature
widely includes studies on language, dialogue management and
speech recognition [1]. Targeting a more natural, flexible and
generalizable HCI still sets challenging problems. Since early
2000s, inception of new research fields, such as investigation
of non-verbal cues for human-human interaction, has enabled
technologies for more humane (human-like) HCI systems [2].
Robots and virtual agents are expected to understand what the
user says, as well as to monitor the users emotional and/or cog-
nitive state and their audio/visual reactions (gestures, views, fa-
cial expressions, mimics etc.), to appropriately take more hu-
mane actions in the course of HCI. In this way, it is expected
that the intermediaries will be more convincing and natural, and
that they will keep the user engaged and enable them to interact
more efficiently [3, 4, 5, 6, 7, 8, 9, 10].

In this study, we focus on head-nod and turn-taking events
that are quite functional in human-human and human-robot in-
teractions. As humans, we manage the conversational flow with
smooth turn-takings and execute timely head-nods for empha-
sis or feedback. On the other hand, it is a challenging task to
predict timely turn-taking or head-nod events to improve natu-
ralness and user engagement in human-robot interactions. Fur-
thermore, these two events help monitoring and sustaining the
user engagement [11].

We construct a multi-modal framework for prediction of the
head-nod and turn-taking events in dyadic conversations. The
prediction task is basically a binary decision for a particular
event which is likely to happen in the upcoming time instant.
Hence, the problem can be defined as observing dyadic signals
in time interval [t − c, t] to make a prediction at time t for the
starting event at time t + d, where c is the duration of the tem-
poral window and d is the time till the event start.

The rest of the paper is organized as follows. Section 2
presents literature review. Section 3 defines the event predic-
tion framework for dyadic interaction setup. Section 4 presents

experimental work of the proposed head-nod and turn-taking
event prediction framework, and finally Section 5 gives the con-
clusion.

2. Related Work
In the literature, head-nod recognition and detection have been
studied extensively [12, 13, 14]. However, head-nod timing pre-
diction has been addressed in fewer number of studies.

In some of the works, head-nod is addressed under predic-
tion of backchannels which are shortly defined as non-intrusive
feedback expressions [15]. The existing backchannel feedback
mechanisms used in the human-computer interaction are of-
ten founded on rule-based approaches using simple statistical
data [4, 16, 17, 18, 19]. For instance, the relation between the
changes in the sound perception of the speaker and the trig-
gered backchannel signals of the listener has been examined
in [16]. In this study, a backchannel signal is triggered when
there are pauses with certain lengths, preceded by an increase
or decrease in the sound pitch. In this estimation approach, the
type of backchannel signal is not taken into consideration. In
the SAL (Sensitive Artificial Listeners) system [4], the engage-
ment level and emotional response of the user is monitored,
and events where backchannel feedback is necessary are ob-
served. For example, when the user shakes their head or there
is a change in their sound pitch, it is understood that a feedback
is necessary. According to the current mood state of the agent,
through a predefined decision process a backchannel feedback
such as smile or head nod/shake is synthesized.

There are very few studies in the literature aiming to learn
backchannel by using a model based learning [20, 21, 22]. For
example, the head shake gesture as a backchannel is estimated
from speech prosody, spoken words, and eye movements us-
ing Hidden Markov Models in [20]. Their estimation results
are compared with reference data, but the proposed method is
not implemented under any human-computer interaction sce-
nario. Whereas in [21], only the verbal backchannel signals are
predicted based on linguistic and prosodic cues using the naive
Bayesian classifier. This classifier is tested on a verbal interface
with a dialogue management mechanism, and it is reported to
yield better results than an approach that randomly generates
a backchannel signal. Again [22], predict the head nod/shake
by hidden Markov models in relation to verbal and emotional
features of the interaction.

Turn-taking prediction is studied by many research groups
since organization of the turns has been a problem in human-
robot/agent interactions. Throughout the studies and observa-
tions in human-human interactions, prosodic changes [23, 24]
and eye-gaze patterns [25, 23] are shown that they are leading
factors in turn-taking behaviours. Kawahara et al. [23], com-
bine para-linguistic and non-verbal patterns to detect speaker
change and to determine next speaker in poster sessions. They
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Figure 1: System overview

state that prosodic and gaze features are useful for speaker
change detection, while backchannel of audience is also useful
to determine next speaker. In a more recent study, Skantze [24]
proposed a continuous model solution for turn-taking problems.
His work is solely based on audio features where visual channel
communication is not considered. He used task-based interac-
tion database in training while we use naturalistic social talk
interactions which is more challenging and applicable in wild.
Our work also contributes in prediction of head-nod which is a
social signal and supporting turn-taking predictions.

3. Methodology
Our main objective in this study is to predict head-nod and turn-
taking events before they take place in a dyadic conversation
setup. We value these two problems for a more natural HCI
system, in which a robot or virtual agent can predict probable
head-nod or turn-taking opportunity by monitoring the interac-
tion between human user and itself. In this purpose, we pro-
pose an event prediction framework, which can be trained us-
ing human-human dyadic conversational data. Figure 1 presents
system overview of the proposed framework. There are two sets
of features which are extracted from low-level acoustic signals
and high-level non-verbal behavioral cues. We perform feature
summarization for the SVM classifier and utilize temporal fea-
ture stream for the LSTM-RNN classifier. Each block of the
framework and their input/output characterizations are given in
the following subsections.

We define turn-taking event as the time instant that user
ends her/his turn. Similarly, head-nod event is the time instant
that head-nod action starts. Regardless of their type, we call
them both ’event’ which occurs at given time t. Figure 2 shows
event prediction structure over the interaction time-line of par-
ticipants 1 and 2. Binary decision of the event occurrence is
predicted by using features over the recent temporal window of
length c seconds.

Participant 1

Participant 2

tt-c

event start

time

temporal window

t+d

Figure 2: Event prediction time-line

We define two sets of features for the event prediction over
the temporal window. Section 3.1 defines the first set as low-
level acoustic features. The second set of features are defined on

high-level non-verbal behavioral cues in Section 3.2. In the fol-
lowing subsections, aforementioned features and corresponding
dimensions are provided for single participant. Eventual feature
dimensions are given in Section 4, since minor changes apply
for different event predictions: turn-taking and head-nod.

3.1. Acoustic Features

Acoustic features are composed of both spectral and prosodic
features. Spectral properties are described by mel-frequency
cepstral coefficient (MFCC) representation which is the most
commonly used spectral feature in speech and audio process-
ing. We compute 12-dimensional MFCC features. Also, the
log-energy coefficient is appended. Thus, the resulting 13-
dimensional spectral feature vector is defined as fM .

Prosody characteristics at the acoustic level carry impor-
tant temporal and structural clues for audio portion just before
the event occurrence. We choose to include speech intensity,
pitch, and confidence-to-pitch into the prosody feature vector
as in [26, 27]. Speech intensity is extracted as the logarithm of
the average signal energy over the analysis window. Pitch is ex-
tracted using a well-known auto-correlation based method [28].
Confidence-to-pitch provides an auto-correlation score for the
fundamental frequency [27]. These three parameters and their
first temporal derivatives form the 6-dimensional prosody fea-
ture vector, denoted by fP .

Since extracted acoustic features are speaker and utterance
dependent, we apply mean and variance normalization to both
spectral and prosodic features. The mean and variance nor-
malization of features is performed over the temporal window.
Then the normalized spectral and prosodic features are concate-
nated and resulting 19-dimensional acoustic feature vector is
obtained: fA = [fMfP ]. Note that acoustic features are ex-
tracted using a 40 msec sliding window at intervals of 25 msec.
Thus, feature frame rate is 40 Hz.

3.2. Non-verbal behavioral cues

Non-verbal behavioral cues are produced by participants in the
interactions, mostly in a unconscious way. These cues create a
harmony between the participants, for instance one participant’s
head-nod may trigger the other’s head-nod. Mirroring is de-
fined as unconsciously copying others’ non-verbal expressions
in an interaction [29]. Similarly, mirroring effect is observed
in laugh/smile expressions [30]. On the other hand, gazing be-
haviours have important roles in social interactions. In [31], au-
thors show eye-gaze convey essential cues for turn-taking. Also,
turn-taking request can be expressed with relatively rapid, large
and frequent head-nodding [32].

Considering the meanings and their interactions of these
non-verbal behavioral cues, we choose to include them into the
feature set of our event prediction framework. The labels over
the time-line is transformed into binary values with frame rate
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of 40 Hz. The frames get 1’s where non-verbal behavioral event
is active, the rest of the regions get 0’s which means the event
is not active. The frames are totally synchronous with acoustic
feature frames. The resulting 3-dimensional non-verbal behav-
ioral cues (head-nod, laugh/smile, gaze away) feature vector is
denoted as fB .

3.3. Feature Summarization

We perform statistical feature summarization over the temporal
window [t − c, t] for the SVM classifier. For this purpose, we
compute statistical quantities of the acoustic feature that com-
prise of 11 functionals, which are the mean, standard deviation,
skewness, kurtosis, range, minimum, maximum, first quantile,
third quantile, median quantile and inter-quantile range. This
set of functionals were successfully used before by Metallinou
et al. [33] for continuous emotion recognition from speech and
body motion. Resulting summarized acoustic feature vector is
denoted as FA. The dimension of FA is 11 times the dimension
of fA.

Similarly, non-verbal behavioral cues features are reduced
down to single vector. Since these features are binary values,
we choose to keep only one value which denotes the existence
indication of the non-verbal behavioral cue in a given temporal
window, [t−c, t]. For instance, if any portion of head-nod event
appears within the temporal window, we summarize it as 1, oth-
erwise as 0. Thus, summarized single vector has 3 dimensions
and denoted as FB .

3.4. Classifier

We employ SVM and LSTM-RNN classifiers in the proposed
event prediction framework. SVM is a binary classifier based
on statistical learning theory, which maximizes the margin that
separates samples from two classes [34]. SVM projects data
samples to different spaces through kernels that range from sim-
ple linear to radial basis function (RBF) [35]. We consider
the summarized statistical features (FA and FB) as inputs of
the SVM classifier to discriminate occurance or absence of the
’event’ at time t+ d.

On the other hand, LSTM-RNN is an recurrent artificial
neural network model. We use the LSTM-RNN classifier to
model the temporal structure of the feature streams as it has
been successfully used in many time-series data [36]. Since the
model is sequential, frame based time-series features (fA and
fB) are used without summarization. In this work, we use only
one LSTM layer. The further details of the classifier structure
and its parameters are explained in Section 4.

4. Experiments and Results
In Section 3, we describe the methodology of event prediction
in dyadic interactions. Following that, we perform prediction of
two events: turn-taking and head-nod. During the experiments,
the person of interest (POI) is either Participant 1 or Partici-
pant 2. In other words, we have a single classification structure
which takes one participant on focus and make prediction for
that participant. For instance, each annotated head-nod belongs
to one participant position: either 1 or 2. Thus, it is known
which participant is POI for prediction of each head-nod. Then,
we have 2 sources of features: POI and the other (OTH). Natu-
rally, acoustic features and non-verbal behavioral cues features
are available for both of them.

In turn-taking prediction, we use POI(fA, fB) and
OTH(fB). Since, we know only POI has speech in temporal

window. On the other hand, in head-nod prediction we use all
available features: POI(fA, fB) and OTH(fA, fB). Note that
feature dimension orders are preserved both in between POI,
OTH and fA, fB .

4.1. Dataset and Annotations

In order to carry out experimental work, IEMOCAP database
[37] is used. IEMOCAP consists of naturalistic human-human
dyadic conversations with rich affective contents. Five dyads
(sessions), interacts under scripted and spontaneous scenarios,
resulting with 8 hours of data.

Annotations of non-verbal behavioural cues are carried out
on IEMOCAP database. Laugh/smile annotation performed in
our previous study [38]. Head-nod and gaze away cues are
annotated by two human subjects. Then, the annotations are
checked and if necessary corrected by a third subject.

In our annotation scheme, head-nod is defined as vertical
swing of head for a reasonable of time with a conscious or
unconscious mission of carrying a message to other interlocu-
tor. This definition helped eliminating highly speaker dependent
head-nod behaviours. On the other hand, gaze away is defined
as the time portions that the gaze has a fixation out of the other
interlocutor. Rapid eye movements (saccades) are not annotated
as gaze away.

Table 1: Annotation statistics of the three non-verbal behavioral
cues and turn segments that are longer than 5 seconds

# of events Duration (sec)
Mean Std

Head-Nod 1648 1.25 0.67
Laugh/smile 1244 0.96 0.91
Gaze Away 5147 4.26 5.14
Turns 3132 8.04 3.02

Table 1 reports basic annotation statistics of the three non-
verbal behavioral cues and turn segments that are longer than
5 seconds. Turn annotations comes with IEMOCAP database
as described in [37].

4.2. Training

We set the temporal window size c = 2 sec for turn-taking
and c = 3 sec for head-nod event prediction. Then, we cre-
ate a class balanced dataset for each events. For head-nod
events, we obtain balanced dataset by randomly picking 1648
negative class samples from no head-nod regions. For turn-
taking events, for each turn region, we extract one positive
[t − 2, t] and one negative sample [t − 4, t − 2]. We keep
only turns longer than 5 sec since we experiment with varying
d = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}. We attain balanced dataset
with 6264 samples. In all experiments, these balanced datasets
are used in one-session-out (5-fold) test fashion. Thus, all re-
sults are speaker independent.

RBF kernel is used in SVM training and hyper-parameters
are optimized in the first fold with grid search over cross-
validation scheme. Optimized parameters are kept fixed for the
rest folds.

In training of LSTM-RNN, we used single layer of LSTM
with 50 hidden nodes. During the 5-fold test, in each fold we
split 1 session for validation and train with 3 sessions. Early-
stopping is provided by the best accuracy performance on vali-
dation set.
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4.3. Results

In this section, we report our experimental evaluations, which
are obtained over the balanced datasets created in Section 4.2.
Since, experiments are over class balanced set, widely used per-
formance metrics, accuracy (Acc), precision (Pre), recall (Rec),
F1 − score (F1), are utilized in the evaluations. Note that,
positive class is happening of the event: head-nodding of POI,
turn-ending of POI (turn-taking of OTH).

Table 2: Turn-taking prediction performances with the SVM for
varying d in seconds

d 0 0.1 0.2 0.4 0.6 0.8 1
Acc 75,69 73,65 71,57 65,72 58,96 57,27 54,92
Pre 74,98 72,79 70,71 64,92 58,13 56,36 54,38
Rec 77,10 75,56 73,65 68,40 64,11 64,43 61,11
F1 76,03 74,15 72,15 66,61 60,97 60,13 57,55

Turn-taking prediction performances with SVM classifier
are given in Table 2. The best performances are observed with
the minimum delay till the event, d = 0, which is expected by
the nature of the problem. We expect the largest differentiation
between positive and negative class samples when d = 0 and
thus better performance than the others, d > 0.

Considering human-robot interaction, giving 200 msec ad-
vance to the robot to take the turn could be very beneficial even
though prediction performances degrade slightly at d = 0.2 sec.
Another promising observation is having close precision and re-
call performances since both are important for the task. High
precision means less false positives and thus less intervention
while user’s turn continues. High recall means less false nega-
tives and thus less lagging to take the turn.

Table 3: Turn-taking prediction performances with the LSTM-
RNN for varying d in seconds

d 0 0.1 0.2 0.4 0.6 0.8 1
Acc 83,62 81,91 79,89 72,94 64,45 61,14 58,42
Pre 80,53 78,21 77,51 71,59 63,47 61,64 57,98
Rec 88,68 88,46 84,23 76,07 68,07 58,98 61,14
F1 84,41 83,02 80,73 73,76 65,69 60,28 59,52

Table 3 presents turn-taking prediction performances using
LSTM-RNN. We observe remarkable performance improve-
ment with LSTM-RNN compared to SVM for small d. As d
increases, performance difference is getting smaller, which is
quite legitimate since negative and positive class samples get-
ting so similar and makes hard to capture pattern differences for
both of the classifiers. Another observation is that LSTM-RNN
produces systems with better recall performances. This can be
useful for a robot, which displays more talking with more gen-
erous interventions but also timely turn-takings.

Table 4: Head-nod prediction performances with SVM and
LSTM-RNN

SVM LSTM-RNN
FA, FB FA, FB , FSA fA, fB fA, fB , fSA

Acc 59,46 62,49 59,01 63,37
Pre 60,10 63,53 61,75 64,21
Rec 56,13 58,56 47,21 60,32
F1 58,05 60,94 53,51 62,20

In head-nod prediction task, we consider speech activity
(turn states) to help prediction of head-nods, as turn-taking pre-
diction already owns head-nod features. Thus we extract speech
activity feature fSA, which is binary valued stream obtained
from turn annotations as defined for the other non-verbal be-
havioral cues features. Similarly, summarized speech activity
feature FSA is just defined as a binary value to indicate any
temporal change in fSA. The FSA indicates if the participant
started talking or stopped talking.

In Table 4, head-nod prediction performances are given
with and without the speech activity features. We observe that
speech activity features improve performances for both classi-
fiers, but LSTM-RNN favors more than SVM. Although uni-
modal head-nod prediction performances of acoustic features
and social cues are poor and close to random, the multimodal
performances are promising. Since precision is higher, it in-
dicates less false positives and thus less awkward timely head-
nods. False negatives do not create much trouble, since passing
head-nod opportunity as a robot is not a big problem. Actually,
even humans have much variety on head-nodding behaviour.
One can just pass head-nodding if she/he experienced very same
moment that she/he head-nodded before.

We perform decision fusion of the best performing SVM
and LSTM classifiers by weighted sum of the classifier con-
fidence scores as, α ∗ SVM(FA, FB , FSA) + (1 − α) ∗
LSTM(fA, fB , fSA), where α is the weight of the SVM
confidence score. Table 5 presents head-nod prediction per-
formances of the decision fusion for three values of α. We
observed that the decision fusion with α = 0.6 produced the
highest F1 − scores for head-nod prediction task.

Table 5: Decision fusion of the best performing SVM and LSTM
classifiers: SVM(FA, FB , FSA) and LSTM(fA, fB , fSA)

α 0.5 0.6 0.7
Acc 64,28 65,28 65,34
Pre 65,56 66,80 67,17
Rec 60,07 60,68 59,95
F1 62,70 63,59 63,35

5. Conclusion
In this paper, we present a generalized framework for event
prediction in dyadic interactions, such as human-human and
human-robot. We report turn-taking and head-nod predic-
tion performances over human-human conversational data. We
showed that turn-taking prediction can be achieved with rela-
tively better performance, even for predictions hundreds of mil-
liseconds ahead. Head-nod prediction experiments showed that
speech activity features have potential to improve the perfor-
mance and fusion of classifiers achieves the best overall perfor-
mance.

The proposed framework has a potential use for more hu-
mane human-robot interactions. Smooth turn-takings and pro-
ducing timely head-nods are expected to make robots more nat-
ural and engaging.

6. Acknowledgements
This work is supported by Turkish Scientific and Technical Re-
search Council (TUBITAK) under grant numbers 113E324 and
217E040.

1744



7. References
[1] V. Zue and J. Glass, “Conversational interfaces: Advances and

challenges,” Proc. IEEE, vol. 42, pp. 1166–1180, 2000.

[2] C. Clavel, A. Cafaro, S. Campano, and C. Pelachaud, Fostering
User Engagement in Face-to-Face Human-Agent Interactions: A
Survey. Cham: Springer International Publishing, 2016, pp. 93–
120.

[3] S. DMello and A. Graesser, “Autotutor and affective autotutor:
Learning by talking with cognitively and emotionally intelligent
computers that talk back,” ACM Trans Interact Intell Syst, vol. 4,
no. 2, pp. 1–39, 2013.

[4] M. Schroder, E. Bevacqua, R. Cowie, F. Eyben, H. Gunes,
D. Heylen, M. Ter Maat, G. McKeown, S. Pammi, M. Pantic et al.,
“Building autonomous sensitive artificial listeners,” IEEE Trans-
actions on Affective Computing, vol. 3, no. 2, pp. 165–183, 2012.

[5] A. Choi, C. D. Melo, W. Woo, and J. Gratch, “Affective engage-
ment to emotional facial expressions of embodied social agents
in a decision-making game,” Computer Animation and Virtual
Worlds, vol. 23, no. 3-4, pp. 331–342, 2012.

[6] P. Dybala, M. Ptaszynski, R. Rzepka, and K. Araki, “Activating
humans with humor–a dialogue system that users want to interact
with,” IEICE transactions on information and systems, vol. 92,
no. 12, pp. 2394–2401, 2009.

[7] T. Bickmore, L. Pfeifer, and D. Schulman, “Relational agents im-
prove engagement and learning in science museum visitors,” in
International Workshop on Intelligent Virtual Agents. Springer,
2011, pp. 55–67.

[8] D. Bohus and E. Horvitz, “Managing human-robot engagement
with forecasts and... um... hesitations,” in Proceedings of the 16th
international conference on multimodal interaction. ACM, 2014,
pp. 2–9.

[9] E. Andre, M. Rehm, W. Minker, and D. Bühler, “Endowing spo-
ken language dialogue systems with emotional intelligence,” in
Tutorial and Research Workshop on Affective Dialogue Systems.
Springer, 2004, pp. 178–187.

[10] M. Ptaszynski, P. Dybala, R. Rzepka, and K. Araki, “Forgetful and
emotional: Recent progress in development of dynamic memory
management system for conversational agents,” in Proceedings of
the Linguistic And Cognitive Approaches To Dialog Agents Sym-
posium, 2010, pp. 32–38.

[11] C. Rich, B. Ponsler, A. Holroyd, and C. L. Sidner, “Recognizing
engagement in human-robot interaction,” in 2010 5th ACM/IEEE
International Conference on Human-Robot Interaction (HRI),
March 2010, pp. 375–382.

[12] J. Zhao and R. S. Allison, “Real-time head gesture recognition
on head-mounted displays using cascaded hidden markov mod-
els,” in 2017 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Oct 2017, pp. 2361–2366.

[13] A. Kapoor and R. W. Picard, “A real-time head nod and shake
detector,” in Proceedings of the 2001 workshop on Perceptive user
interfaces. ACM, 2001, pp. 1–5.

[14] Y. Chen, Y. Yu, and J.-M. Odobez, “Head nod detection from a full
3d model,” in Proceedings of the ICCV 2015, no. EPFL-CONF-
213704, 2015.

[15] V. H. Yngve, “On getting a word in edgewise,” in Chicago Lin-
guistics Society, 6th Meeting, 1970, pp. 567–578.

[16] K. P. Truong, R. Poppe, and D. Heylen, “A rule-based backchan-
nel prediction model using pitch and pause information,” in Pro-
ceedings of Interspeech 2010. International Speech Communi-
cation Association (ISCA), September 2010, pp. 3058–3061.

[17] B. Inden, Z. Malisz, P. Wagner, and I. Wachsmuth, “Timing and
entrainment of multimodal backchanneling behavior for an em-
bodied conversational agent,” in Proceedings of the 15th ACM on
International Conference on Multimodal Interaction, ser. ICMI
’13. New York, NY, USA: ACM, 2013, pp. 181–188.

[18] R. Poppe, K. P. Truong, and D. Heylen, “Perceptual evaluation of
backchannel strategies for artificial listeners,” Autonomous Agents
and Multi-Agent Systems, vol. 27, no. 2, pp. 235–253, 2013.

[19] R. Poppe, M. ter Maat, and D. Heylen, “Switching wizard of oz
for the online evaluation of backchannel behavior,” Journal on
Multimodal User Interfaces, vol. 8, no. 1, pp. 109–117, 2014.

[20] L.-P. Morency, I. de Kok, and J. Gratch, “A probabilistic
multimodal approach for predicting listener backchannels,” Au-
tonomous Agents and Multi-Agent Systems, vol. 20, no. 1, pp. 70–
84, 2010. [Online]. Available: http://dx.doi.org/10.1007/s10458-
009-9092-y

[21] R. Meena, G. Skantze, and J. Gustafson, “Data-driven models for
timing feedback responses in a map task dialogue system,” Com-
puter Speech & Language, vol. 28, no. 4, pp. 903–922, 2014.

[22] J. Lee and S. C. Marsella, “Predicting speaker head nods and the
effects of affective information,” IEEE Transactions on Multime-
dia, vol. 12, no. 6, pp. 552–562, 2010.

[23] T. Kawahara, T. Iwatate, and K. Takanashi, “Prediction of turn-
taking by combining prosodic and eye-gaze information in poster
conversations,” in Thirteenth Annual Conference of the Interna-
tional Speech Communication Association, 2012.

[24] G. Skantze, “Towards a general, continuous model of turn-taking
in spoken dialogue using lstm recurrent neural networks,” in Pro-
ceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, 2017, pp. 220–230.

[25] D. G. Novick, B. Hansen, and K. Ward, “Coordinating turn-taking
with gaze,” in Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on, vol. 3, Oct 1996, pp. 1888–
1891 vol.3.

[26] E. Bozkurt, E. Erzin, and Y. Yemez, “Affect-Expressive Hand
Gestures Synthesis and Animation,” in IEEE International Con-
ference on Multimedia and Expo (ICME), Torino, Italy, 2015.

[27] E. Bozkurt, Y. Yemez, and E. Erzin, “Multimodal analysis of
speech and arm motion for prosody-driven synthesis of beat ges-
tures,” Speech Communication, vol. 85, pp. 29–42, 2016.

[28] A. de Cheveigne and H. Kawahara, “YIN, a fundamental fre-
quency estimator for speech and music,” The Journal of the
Acoustical Society of America, vol. 111, no. 4, p. 1917, 2002.

[29] T. L. Chartrand and J. A. Bargh, “The chameleon effect: the
perception–behavior link and social interaction.” Journal of per-
sonality and social psychology, vol. 76, no. 6, p. 893, 1999.

[30] S. Finger, “Curious behavior: Yawning, laughing, hiccupping, and
beyond by robert provine,” Journal of the History of the Neuro-
sciences, vol. 22, no. 4, pp. 429–430, 2013.

[31] S. Ho, T. Foulsham, and A. Kingstone, “Speaking and listening
with the eyes: gaze signaling during dyadic interactions,” PloS
one, vol. 10, no. 8, p. e0136905, 2015.

[32] J. Napier and L. Leeson, “Sign language in action,” in Sign Lan-
guage in Action. Springer, 2016, pp. 50–84.

[33] A. Metallinou, A. Katsamanis, and S. Narayanan, “Tracking con-
tinuous emotional trends of participants during affective dyadic
interactions using body language and speech information,” Image
and Vision Computing, vol. 31, no. 2, pp. 137–152, 2013.

[34] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, pp. 273–297, 1995.

[35] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp.
27:1–27:27, May 2011.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower,
S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, “IEMOCAP:
Interactive emotional dyadic motion capture database,” Language
resources and evaluation, vol. 42, no. 4, pp. 335–359, 2008.

[38] B. B. Turker, Y. Yemez, T. M. Sezgin, and E. Erzin, “Audio-facial
laughter detection in naturalistic dyadic conversations,” IEEE
Transactions on Affective Computing, vol. 8, no. 4, pp. 534–545,
Oct 2017.

1745


