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Abstract
This work investigates speaker adaptation and regulariza-

tion techniques for deep neural network acoustic models (AMs)
in automatic speech recognition (ASR) systems. In previous
works, GMM-derived (GMMD) features have been shown to
be an efficient technique for neural network AM adaptation. In
this paper, we propose and investigate a novel way to improve
speaker adaptive training (SAT) for neural network AMs using
GMMD features. The idea is based on using inaccurate tran-
scriptions from ASR for adaptation during neural network train-
ing, while keeping the exact transcriptions for targets of neural
networks. In addition, we apply a mixup technique, recently
proposed for classification tasks, to acoustic models for ASR
and investigate the impact of this technique on speaker adapted
acoustic models. Experimental results on the TED-LIUM cor-
pus show that the proposed approaches provide an additional
gain in speech recognition performance in comparison with the
speaker adapted AMs.
Index Terms: speech recognition, acoustic models, data aug-
mentation, mixup, deep neural networks, GMMD features,
speaker adaptation, speaker adaptive training, MAP

1. Introduction
Adaptation of neural network acoustic models is a rapidly de-
veloping research area. The aim of acoustic model (AM) adap-
tation is to reduce mismatches between training and testing
acoustic conditions and improve the accuracy of the automatic
speech recognition (ASR) system for a target speaker or chan-
nel using a limited amount of adaptation data from the target
acoustic source.

Various adaptation methods have been developed for deep
neural network (DNN) hidden Markov model (HMM) AMs.
They include linear transformation, such as linear input net-
work transformation (LIN) [1, 2], feature-space discrimina-
tive linear regression (fDLR) [3, 4], linear hidden network
(LHN) [1], linear output network (LON) [2], and output-feature
discriminative linear regression [4]. In order to improve gener-
alization during the adaptation regularization techniques, such
as L2-prior regularization [5], Kullback-Leibler divergence reg-
ularization [6], conservative training [7] and others [8] are used.
There are also several model-space adaptation methods, such as
learning speaker-specific hidden unit contributions (LHUC) [9],
the adaptation parameters estimation via maximum a posteriori
(MAP) linear regression [10] and hierarchical MAP approach
[11]. The concept of multi-task learning (MTL) has been ap-
plied to the task of speaker adaptation in several works [12–14]
and has been shown to improve the performance of different
model-based DNN adaptation techniques. Using auxiliary fea-

tures, such as i-vectors [15–17], is another widely used ap-
proach in which the acoustic feature vectors are augmented with
additional speaker-specific or channel-specific features com-
puted for each speaker or utterance at both training and test
stages. Alternative methods include adaptation with speaker
codes [18], factorized adaptation [19] and multi-factor aware
joint DNN training [20]. Another way of DNN AM adaptation
is based on combining Gaussian mixture model (GMM) and
DNN models [21–27]. In the past, many effective adaptation
algorithms that have been developed for GMM-HMM systems,
such as maximum a posteriori (MAP) adaptation [28], maxi-
mum likelihood linear regression (MLLR) [28], and others [29].
A common way to apply GMM-HMM adaptation algorithms to
DNN-HMM models is using GMM-adapted features as input
for a DNN. For example, features adapted with fMLLR are used
for DNN training in [3, 21, 22, 26]. GMM-derived (GMMD)
features [27, 30–33] provide a universal method for transfer of
adaptation algorithms from the GMM models to DNN frame-
work. GMMD features are extracted using an auxiliary GMM
model and are fed to DNN models as auxiliary or basic features.
Adaptation of a DNN model trained on GMMD features is per-
formed through adaptation of an auxiliary GMM model used in
GMMD feature extraction.

Methods developed in this paper and their applications
mainly focus on the speaker adaptive training (SAT) technique
which is based on using GMMD features. The objective of
this paper is to propose and investigate various approaches of
speaker adaptation performance improvement.

The first contribution consists in a novel improved method
of SAT using GMMD features. The idea is based on using in-
accurate transcriptions for speaker adaptation during DNN AM
training.

The second contribution concerns the mixup technique, re-
cently proposed in papers [34, 35] for several tasks, such as im-
age classification [34], recognition of Google commands [34],
and sound recognition [35]. Despite the fact that these papers
demonstrate the promising results for the classification prob-
lem, the question of applying the mixup technique to the con-
tinuous speech recognition task has not been studied in the lit-
erature. In this paper, we first discuss a way to integrate mixup
training for recurrent neural network (RNN) acoustic models,
and propose a method to apply mixup for neural network mod-
els sequence-trained with lattice-free maximum mutual infor-
mation (LF-MMI) criterion [36]. Then, we investigate if it is
possible to improve the performance of SAT models, trained
with GMMD features, by applying the mixup technique.

The rest of the paper is organized as follows. Section 2 dis-
cusses mixup AM training for ASR and introduces a possible
way to apply mixup for DNN AMs trained with LF-MMI cri-
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terion. A SAT technique, based on the use of GMMD features,
and its proposed improved modification are presented in Sec-
tion 3. Section 4 describes the experimental results for SAT,
mixup training and their combination. Finally, the conclusions
are given in Section 5.

2. Mixup for acoustic models in ASR
Mixup technique [34], also called between class learning
in [35], has recently been proposed in the literature for several
classification tasks as a form of data augmentation and regu-
larization for deep neural networks. The idea of this method
is based on adding during DNN training new synthetic feature
vector examples obtained as a linear combination of original
feature vectors. Targets for this synthetic vectors are generated
as a linear combination of corresponding targets of vectors used
in combination. Let xi and xj denote two feature vectors from
the training data set. Then, a synthetic feature vector x̃i,j(ξ) is
obtained as a linear combination of these vectors as follows:

x̃i,j(ξ) = ξxi + (1− ξ)xj , (1)

where ξ ∈ [0, 1] is a random variable representing a mixing
weight. In our case, ξ follows continuous uniform distribu-
tion U(0, 0.5). The synthetic target vector ỹi,j(ξ) for x̃i,j(ξ)
is modeled as

ỹi,j(ξ) = ξyi + (1− ξ)yj , (2)

where yi and yj are the targets for xi and xj , respectively.
In this paper, we investigate one modification of mixup for

the speech recognition task. More specifically, we are inter-
ested in applying the mixup concept to sequence-trained neural
network AMs, which nowadays are state-of-the-art of acoustic
modeling in ASR.

2.1. Mixup for sequence-trained neural networks on
lattice-free MMI

Lets denote a sequence of input vectors in the training corpus T
as Xi = {xi1, . . . , xiT }, and the corresponding targets as Yi =
{yi1, . . . , yiT }, so that (Xi,Yi) ∈ T. Each epoch of training
using the mixup algorithm consists of the following steps:

1. For each (Xi,Yi) ∈ T:

1.1. Randomly choose from the training corpus another se-
quence of training vectors (Xj ,Yj) ∈ T.

1.2. Get ξ ← U(0, 0.5).

1.3. Generate a new synthetic sequence of input vectors as
X̃i,j(ξ) = {x̃i,j1 (ξ), . . . , x̃i,jT (ξ)} ∈ T̃, where x̃i,jt (ξ)

is obtained from xit and xjt as shown in Formula (1).

1.4. Generate a sequence of new synthetic target vec-
tors for X̃i,j(ξ) as Ỹi,j(ξ) = {ỹi,j1 (ξ), . . . , ỹi,jT (ξ)},
where ỹi,jt (ξ) is obtained using Formula (2). This new
pair of sequences will be a part of the synthetic corpus
T̃: (X̃i,j(ξ), Ỹi,j(ξ)) ∈ T̃.

2. Complete the current epoch of training on the obtained syn-
thetic data T̃.

In this paper, we focus on applying this algorithm to neural
networks trained with LF-MMI [36]. The MMI objective func-
tion [37, 38] aims to maximize the posterior probability of the

correct utterance, also decreasing the probability of incorrect
alternatives, given the model:

FMMI(ΛΛΛ) =
R∑

r=1

log
pΛΛΛ(Or|φr)kP (φr)∑
φ pΛΛΛ(Or|φ)kP (φ)

, (3)

where ΛΛΛ represents the acoustic model parameters; O =
(O1, . . . ,OR) is the set of training sentences; k is the acoustic
scale; P (φ) is the language model probability for sentence O;
φr = φ(Wr) is the composite HMM model, corresponding to
the (correct) transcription of the training sentenceOr and Wr is
the sequence of words in this transcription. Here the numerator
corresponds to the data given the correct word sequence Wr ,
and the denominator corresponds to the total likelihood of the
data given all possible word sequences W.

To compute Formula (3), numerator and denominator
graphs are used. In [36] for LF-MMI both these graphs are
represented in the form of finite state acceptors (FSAs), and a
phone-level n-gram language model (LM) is used instead of a
word-level LM. Details about these FSAs are provided in [36].
Each arc of the numerator FSA can be associated with a frame
index. In order to apply the algorithm described above to the
LF-MMI DNN training, step 1.4. should be modified to oper-
ate on the level of numerator FSAs. One way to do this is to
perform a weighted combination of two nominator FSAs into
a single FSA. Weights for the combination are proportional to
ξα and (1 − ξ)α, where ξ and (1 − ξ) are the same weights
that are applied for the corresponding feature vectors, and α is
a scaling factor1. Other ways to apply mixup for ASR can be
found in [39].

3. Improved SAT using GMMD features
The use of GMM-derived (GMMD) features has been shown
to provide an efficient technique of neural network AM adap-
tation for different adaptation tasks, such as speaker adapta-
tion [27, 30, 40], environment or noise adaptation [31, 32]. In
this section, we describe a standard (Section 3.1) and improved
(Section 3.2) SAT procedures for neural network AMs using
GMMD features.

3.1. Speaker adaptation of neural network AMs using
GMMD features

GMMD features are obtained using an auxiliary GMM-HMM
model, which transforms acoustic feature vectors into log-
likelihoods vectors. For the auxiliary GMM-HMM model, a
monophone or triphone GMM-HMM with a low number of
states (50–200) can be used. At this step, speaker adaptation of
the auxiliary speaker-independent (SI) GMM-HMM model is
performed for each speaker in the training corpus using correct
transcriptions and a new speaker-adapted GMM-HMM model
is created in order to obtain speaker-adapted GMMD features.

For a given acoustic feature vector, a new GMMD feature
vector is obtained by calculating log-likelihoods across all the
states of the auxiliary GMM model on the given vector. Sup-
pose ot is the acoustic feature vector at time t, then the new
GMMD feature vector ft is calculated as follows:

ft = [p1
t , . . . , p

n
t ], (4)

where n is the number of states in the auxiliary GMM-HMM
model,

1In this paper, we empirically chose to use α = 3 for experiments.
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pit = log (P (ot | st = i)) (5)

is the log-likelihood estimated using the GMM-HMM. Here st
denotes the state index at time t.

The adapted GMMD feature vector ft is concatenated with
the original vector ot to obtain vector xt. These features are
used as the input for training a SAT neural network AM.

The described SAT training is universal and can be used for
any type of neural network topology. For experiments in this
paper, we chose one promising architecture, recently proposed
in [41] – interleaved TDNN-LSTM models. These neural net-
work models combine in their structure temporal convolution
with recurrent neural networks and consist of a number of inter-
leaving time delay neural network (TDNN) and long short-term
memory (LSTM) layers.

In this work, we use the MAP adaptation algorithm [42] in
order to adapt the auxiliary SI GMM model. Speaker adaptation
of a neural network AM model, built on GMMD features, is
performed through the MAP adaptation of the auxiliary GMM
model which is used for calculating GMMD features.

3.2. Proposed approach to SAT using transcriptions from
ASR

In the standard SAT approach at the training stage, adaptation
for each speaker is performed using original (exact) transcrip-
tions from the training corpus. However, at the test time, inaccu-
rate transcriptions from the ASR system are used for adaptation.
Hence, speaker adaptive training and decoding are performed
in different conditions. Also, it is known that MAP approach is
sensitive to the quality of the transcriptions used in adaptation.
Both these factors can degrade adaptation performance.

Taking these factors into account, we propose to improve
the SAT procedure with GMM-based adaptation framework as
shown in Figure 1. The main idea is based on using transcrip-
tions from the ASR system for adaptation of the auxiliary GMM
model. This is different from the standard approach, where ex-
act transcriptions are used for adaptation. At the same time, in
the proposed SAT scheme, the targets and alignment for training
are obtained using the exact transcriptions.

The decoding of the training corpus can be done with a
speaker-independent (SI) AM and the LM, which is used in the
evaluation experiments. From the practical point of view, in or-
der to obtain more realistic transcriptions for SAT, we should
exclude from the training corpus for this AM those data, which
this AM will decode. To follow this principle, one solution, that
we applied in this paper, is to split the training corpus into two
parts: Train1 and Train2 and train two AMs, correspondingly,
AM1 and AM2. Then, we can use AM1 to decode Train2 and
AM2 to decode Train1.

The motivation for this approach is to make adaptation
more robust to overfitting during the training and to transcrip-
tion errors during adaptation at the test time.

4. Experimental results
4.1. Data sets

The experiments were conducted on the TED-LIUM cor-
pus [43]. We used the last (second) release of this corpus. This
publicly available data set contains 1495 TED talks that amount
to 207 hours (141 hours of male, 66 hours of female) speech
data from 1242 speakers, 16kHz. For experiments with SAT
and adaptation we removed from the original corpus data for
those speakers, who had less than 5 minutes of data, and from

Auxiliary GMM 

Deep TDNN-LSTM training 

Speaker adapted 
GMMD feature vector 

 Speaker independent 
acoustic  feature vector 

Inaccurate  
transcriptions 

Input sound 

𝐱𝑡=𝐨𝑡 ⊕ 𝐟𝑡 

Accurate 
transcriptions 

ASR 

Speaker adaptation 

Figure 1: Speaker adaptive training for a deep TDNN-LSTM
AM using MAP-adapted GMMD features and inaccurate tran-
scriptions from ASR for adaptation.

the rest of the corpus we made three data sets: training, devel-
opment and test. Characteristics of the obtained data sets are
given in Table 1. A more detailed description of data can be
found in [40].

Table 1: Data sets statistics

Characteristic Train Dev. Test

Total duration, hours 171.66 3.49 3.49
Mean duration per speaker, minutes 10 15 15
Number of speakers 1029 14 14
Number of words - 36672 35555

For evaluation, a 4-gram language model (LM) with 152K
word vocabulary was used. The LM is similar to the ”small”
one, which is currently used in the Kaldi tedlium s5 r2 recipe.
The only difference is that we modified a little a training set,
removing from it those data, that present in our test and devel-
opment sets.

4.2. Baseline system

The open-source Kaldi speech recognition toolkit [44] was used
for the experiments presented in this paper. We used TDNN-
LSTM model topology described in [41]. 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) without cepstral trun-
cation were used as the input into the neural network. Each
interleaved TDNN-LSTM model had 9 layers2 followed by a
softmax layer where 3640 triphone states were used as targets.
All models were trained using the LF-MMI criterion and with
3-fold reduced frame rate, as in [36].

2Following the notation from [41, 45], the model configuration can
be described as {-2,-1,0,1,2} {-1,0,1} L {-3,0,3} {-3,0,3} L {-3,0,3}
{-3,0,3} L, where L corresponds to a projected LSTM (LSTMP) layer
with 512 cells and 128-dimensional recurrent and 128 non-recurrent
projections.
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Table 2: Results for SI and SAT TDNN-LSTM AMs trained with LF-MMI (with and without mixup) on the development and test data
sets of the TED-LIUM corpus. ∆WER denotes the relative WER reduction with respect to the baseline SI AM. For the improved SAT,
the number of AMs in parentheses shows the number of AMs used to decode the training corpus for GMMD feature extraction.

# AM Features Development Test
WER,% ∆WER,% WER,% ∆WER,%

1 SI MFCC 11.48 baseline 8.63 baseline
2 SI with mixup MFCC 10.42 9.2 7.60 11.9

3 SAT MFCC⊕GMMD 10.27 10.5 7.91 8.3
4 Improved SAT (1 AM) MFCC⊕GMMD 9.79 14.7 7.88 8.7
5 Improved SAT (2 AMs) MFCC⊕GMMD 9.71 15.4 7.70 10.8
6 Improved SAT (2 AMs) with mixup MFCC⊕GMMD 8.70 24.2 7.26 15.9

4.3. SAT models

4.3.1. Auxiliary GMM

An auxiliary GMM-HMM model was used to calculate GMMD
features, as described in Section 3. In this paper, the auxiliary
GMM-HMM model had 168 triphone states, with 1-state HMM
topology for a triphone, as in [36] and was trained using 3-fold
reduced frame rate in order to be consistent with TDNN-LSTM
AMs trained with LF-MMI criterion. Adaptation of the auxil-
iary GMM-HMM model was performed using MAP adaptation
algorithm [42].

During the training of SAT TDNN-LSTMs, two scenarios
were investigated for speaker adaptation of the auxiliary GMM-
HMM models: (1) adaptation using exact transcriptions; and (2)
adaptation using inaccurate transcriptions obtained from the de-
coding of the training corpus. The first scenario is related to the
standard SAT approach, and the second one – to the improved
SAT approach. In the second scenario, in order to perform de-
coding, two SI AMs were trained on the subsets of the train-
ing corpus, as it is explained in Section 3.2. For comparison
purpose, we also performed an additional experiment without
splitting the corpus into two parts, when only a single SI base-
line AM was used to decode the training corpus and obtain in-
accurate transcriptions for adaptation.

4.3.2. SAT TDNN-LSTMs

Three SAT TDNN-LSTM AMs were trained using GMMD fea-
tures and MAP adaptation, as described in Section 3.

Input features for SAT TDNN-LSTM AMs were 168-
dimensional speaker-adapted GMMD features concatenated
with conventional 40-dimensional MFCCs without cepstral
truncation (the same MFCCs, as were used to train the base-
line AM). All SAT TDNN-LSTMs had the same configuration,
except for the input layer, as the baseline SI AM, described in
Section 4.2, and were trained in the same manner, using LF-
MMI criterion and 3-fold reduced frame rate.

The first SAT TDNN-LSTM AM corresponds to the stan-
dard SAT approach, described in Section 3.1. The two other
SAT TDNN-LSTM AMs correspond to the improved SAT pro-
posed in Section 3.2. They are different from each other in the
way inaccurate transcriptions were obtained for adaptation dur-
ing the SAT training: either with a single baseline AM, or with
two AMs trained on two different parts of the training corpus.

4.4. AMs with mixup

Two TDNN-LSTM AMs were trained using the mixup tech-
nique described in Section 2. First, mixup was applied to the
baseline SI model (Section 4.2). The SI TDNN-LSTM AM with

mixup was trained with the same criterion and configuration, as
the baseline AM, while applying mixup for LF-MMI, as de-
scribed in Section 2.1, during the training. Second, to explore
the impact of the mixup technique to SAT, we applied mixup
during the training of the best SAT TDNN-LSTM AM.

4.5. Analysis of results

The summary of experimental results for TED-LIUM develop-
ment and test data sets is presented in Table 2 in terms of word
error rate (WER). The first two lines of the table correspond
to two SI AMs: (#1) the baseline AM described in Section 4.2
and (#2) the AM with mixup. We can see that mixup training
provides 9.2–11.9% of relative WER reduction.

The rest of the table is devoted to different SAT AMs.
The adaptation experiments were conducted in an unsupervised
mode on the test data using transcriptions obtained from the
first decoding pass by the SI baseline AM. Line #3 shows the
result for the standard SAT, which gives 8.3–10.3% of relative
WER reduction with respect to the baseline SI AM. The im-
proved SAT (lines #4 and #5) provides an additional gain in
performance in comparison with the standard SAT. Also, as we
expected, splitting the training corpus into two parts to obtain
inaccurate transcriptions for SAT (as it was described in Sec-
tion 3.2) gives slightly better results, than using a singe AM
to decode all the corpus. Further improvement (about 16-24%
of relative WER reduction with respect to the SI baseline) was
achieved when mixup was applied during the SAT training.

5. Conclusions
In this work, we have proposed and investigated two different
ways to improve SAT for neural network AMs trained using
MAP-adapted GMMD features. The first approach is based
on using transcriptions from the ASR system for adaptation
of the auxiliary GMM model during the SAT. The second ap-
proach is related to the mixup training technique. Experiments
on the TED-LIUM corpus demonstrated the effectiveness of
these methods for state-of-the-art TDNN-LSTM neural network
AMs trained with LF-MMI criterion. It was found that SAT of
TDNN-LSTM AMs using MAP-adapted GMMD features and
the mixup training technique can be complementary to each
other, and together provide 16-24% of relative WER reduction
with respect to the speaker independent AM.
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