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Abstract
We describe the architecture of an always-on keyword spot-
ting (KWS) system for battery-powered mobile devices used
to initiate an interaction with the device. An always-available
voice assistant needs a carefully designed voice keyword detec-
tor to satisfy the power and computational constraints of battery
powered devices. We employ a multi-stage system that uses a
low-power primary stage to decide when to run a more accu-
rate (but more power-hungry) secondary detector. We describe
a straightforward primary detector and explore variations that
result in very useful reductions in computation (or increased
accuracy for the same computation). By reducing the set of tar-
get labels from three to one per phone, and reducing the rate at
which the acoustic model is operated, the compute rate can be
reduced by a factor of six while maintaining the same accuracy.
Index Terms: Speech Recognition, Keyword Spotting, Deep
Neural Networks, Acoustic Modelling, Embedded Devices

1. Introduction
There is increasing interest in hands free, voice-first interfaces
to automated assistants such as Siri, Alexa and the Google As-
sistant. These systems rely on a voice trigger system to detect
a key phrase (e.g. Hey Siri for Apple devices) that initiates an
interaction with the device. The voice trigger detector is a kind
of keyword spotter, that continuously receives a stream of au-
dio from the microphone and listens only for the trigger phrase
at the beginning of an utterance. A detection causes the device
to change state and initiate a further interaction with the user.
When the device is battery powered like the iPhone or the Apple
Watch, it is imperative that the voice trigger detector consume
as little power as possible while still maintaining sufficient ac-
curacy. In recent iPhone designs this is achieved by running a
primary detector on a low-power processor that runs even when
the main processor is asleep [1]. This primary detector can de-
cide to wake the main processor, where further checks are done
(on the same waveform) before the main recognizer is applied
and the identity of the speaker is confirmed [2]. This arrange-
ment is efficient in battery use: power consumption depends
on the continuing requirements of the primary detector plus the
false-wake rate of the primary detector and the power cost of
waking the main processor. It can produce good accuracy: the
false-alarm rate of the system is determined not by the primary
but by subsequent components. Furthermore, considerations of
privacy mean that we want to reduce to a minimum the number
of times that audio gets sent to a server in error.

Some older approaches to KWS adapted large vocabulary
continuous speech recognition (LVSCR) systems for detecting
keywords [3, 4], however these methods use large acoustic and
language models which are unsuitable for on-device applica-
tions. In more recent approaches to KWS, by limiting the num-
ber of keywords that the system is trained to detect, it is pos-
sible to design systems that are small enough to be run effi-

ciently on low-power mobile and embedded devices. Recent
studies investigate several different approaches to this problem;
some methods employ the conventional DNN-HMM approach
for computing a detection score [5, 6], other feed-forward meth-
ods employ DNNs to compute frame-wise posteriors and then
temporally smooth the posteriors to compute keyword detection
scores [7, 8, 9], while some approaches use recurrent models
[10, 11, 12, 13, 14]. In this paper we present a DNN-HMM
model for detecting the trigger phrase Hey Siri specifically,
however the methods developed are general.

In this paper we focus only on the primary detector which
runs continuously on a low-power, low resource, always-on pro-
cessor where computation and memory are the limiting factors.
The rest of the paper is organised as follows: in Section 2, we
outline the DNN-HMM KWS system, describe the structure of
the acoustic model and provide details of the training and eval-
uation setup. In Section 3, we investigate the effect of changing
the DNN targets and the effect of minimum durations of the
HMM states on detection accuracy. In Section 4 we demon-
strate that the detector DNNs can be run at lower frame-rates
compared to the baseline without compromising accuracy. Sec-
tion 5 provides a summary and conclusions from the results.

2. System Outline
Figure 1 provides an overview of the detector. The microphone
receives a continuous stream of audio which is transformed into
a stream of feature vectors by the front-end acoustic analysis. In
order to limit the number of inputs to the DNN and therefore the
size of the input layer, we compute 13-dimensional MFCCs us-
ing a window of 25ms at a rate of 100 frames per second (FPS).
At a given time-step we supply 19 consecutive frames to the
DNN which is trained to predict the label for the centre frame.
The DNN comprises a stack of fully connected layers followed
by a softmax layer [15] at the output. We use the same num-
ber of units in each of the hidden layers. Throughout the paper,
the architecture of a DNN is denoted by d× w, where d repre-
sents the number of hidden layers and w represents the number
of units in each layer. We did not find a significant difference
in accuracies between using sigmoid and ReLU activations for
the hidden units. We therefore use sigmoid activations for the
hidden units since the values are bounded between (0, 1) which
simplifies conversion of the weights to fixed-point values (see
Section 2.2).

The output softmax layer contains 20 units; the phrase Hey
Siri contains 6 phones, each of which are further divided into 3
states. The 2 remaining output units correspond to silence and
a background/filler state. At every frame, the DNN outputs are
divided by state priors to yield scaled likelihoods ŷn [16]. A
Dynamic Programming process accumulates scores for the best
way to get to each state by multiplying state scores with the
probability of staying or transitioning to a state and taking the
maximum over the 2 ways of arriving at a state. The observation
probabilities are then added to the state scores. Finally for every
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Figure 1: An overview of the DNN-HMM KWS system. A window of frames from a continuous stream of features is input to the DNN at
every time step. The DNN comprises a stack of full connected sigmoidal layers (some connections have been omitted for clarity) and a
softmax output. The posteriors are then used to compute α values for the HMM states and finally a scoreRt is computed at each frame.

frame, we calculate the ratio of the log-likelihood of the score
for the final state of the keyword HMM and the filler HMM:

Rt = log
P (xt|θKW )

P (xt|θF )
,

where xt is a stream of input features and θKW , θF are the
parameters of the keyword and filler HMMs, respectively. A
detection is made if the score Rt is above a set threshold.

2.1. Model Training

The DNN acoustic model (AM) is trained by minimising the
framewise cross-entropy loss (or maximizing the conditional
likelihood of the training labels):

C = − 1

N

N∑

n=1

[
log ŷncn

]
,

where cn is the target label for input xn, ŷncn is the model out-
put for the nth frame and cnth class and N is the total number
of examples in a mini-batch. The DNN weights are initialised
randomly by sampling from a uniform distribution according to
the procedure outlined in [17]. The model parameters are op-
timised using stochastic gradient descent (SGD). We use ran-
domly sampled minibatches of 128 examples and training is
initialised with a learning rate of 0.01. One epoch is defined
as 10,000 gradient updates and the learning rate is decayed by a
factor 0.96 at the end of every epoch. We use a constant momen-
tum rate of 0.9 and the models are trained until convergence.
We monitor the progress of training on a held-out fraction of
the training set.

2.2. Quantisation

The DNNs AMs are trained on one or more GPUs and the
weights and activations of the networks are represented by
32-bit floating point numbers. However when deployed on
low-power, low-memory mobile devices, storing floating point
weights can take up a lot of memory while floating point
arithmetic operations consume a lot of power. Quantising the
weights and activations to 8-bit fixed point integers reduces

model size by 75% and reduces power consumption. Addition-
ally, parallel 8-bit operations are available for certain proces-
sors. Therefore after training, we quantise the model weights
to 8-bit fixed point integer values for inference on the device.
We use a similar scheme as in [18], but with a floating-point
sigmoid. We also quantise the first layer as it comprises a large
proportion of the whole network, in this case adding an elemen-
twise pre-sigmoid scaling to help accommodate the wider range
of weights there.

2.3. Dataset

The training dataset contains approximately a million utterances
with the trigger phrase Hey Siri. The training utterances are aug-
mented with reverberations and varying noise levels to simulate
a range of real world conditions. The evaluation dataset con-
tains 4000 utterances with the trigger phrase and 2000 hours
of speech data in a range of noise conditions without the trig-
ger phrase. During training we use 1000 utterances from the
training set as a validation set and the remaining utterances for
parameter estimation. Frame-wise labels for all the utterances
are generated via forced alignment using an LVCSR system.
The context-dependent phonestate labels are mapped to phrase-
specific labels, silence and a filler label for the remainder.

2.4. Evaluation

Results for the baseline DNN-HMM KWS system are presented
in the form of modified detection error trade-off (DET) curves,
where the Y-axis represents false reject (FR) rate and the X-
axis represents number of false accepts (FAs) per hour (lower
is better). Points on the curve correspond to different threshold
values and the curve is used to set an operating point for a given
device and resource limitations. The accuracies of models are
compared at the desired FA/hour value. We train DNNs with
d = 5 layers and a range of hidden units in each layer, w ∈
32, 48, 128, 192.

From Figure 2 we note that the accuracies of the detectors
improve as the number of parameters in the model are increased.
Although we observe a significant improvement in accuracy
with larger models (e.g. the 5x192 DNN), they contain an order
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Figure 2: Modified DET curves over a range of DNN architec-
tures and parameter counts.

of magnitude more parameters compared to the smaller models.
These large DNNs cannot be continuously run within the power
and compute budget of battery powered devices like the iPhone
and the Apple Watch. Therefore for the first pass we typically
use very small DNNs with a total number of parameters< 15k.
Note that for smaller models, the input layer dominates compu-
tation. For example for the 5x32 DNN, the input layer accounts
for roughly half the parameters and computation in the model.

3. Whole Phone Models
The KWS system described above follows the conventional
DNN-HMM approach where the front-end calculates MFCCs
every 10 ms at 100 FPS and the target labels for each phone
are divided into 3 states for the beginning, middle and end of
the segment. The scaled conditional probabilities from the AM
for each frame are then multiplied (or rather their log-values
are added). At each frame the system reports a score for the
labelling of the preceding frames that ends with the states of
the trigger phrase in their sequence, arranged so as to maximise
the score. More recently, it has been demonstrated that LVCSR
systems trained to predict whole phone labels (single label per
phone) can achieve accuracies similar to conventional systems
with 3 labels per phone. This result has been demonstrated for
both LSTM RNNs trained with cross-entropy [19] and with the
CTC criterion [20].

We repeat the experiments in Section 2, but with a single
target label per phone instead of 3. The DNNs now comprise
8 output labels: 1 for each phone in Hey Siri, one label for si-
lence and a label for background noise/filler. We map the align-
ments obtained previously to the new set of labels and retrain
the DNNs with exactly the same training setup and parameters
as before without any change. Figure 3 shows a comparison be-
tween the baseline 5x32 DNN and the DNN with whole phone
targets with the same architecture. We observe a significant
loss in accuracy compared to the baseline. There are several
possible reasons for the drop in accuracy, including: a) multi-
plication of probabilities for the same hypothesis conditioned
on overlapping evidence is a bad idea, b) we need a minimum
duration constraint that each phone must explain at least 3 con-
secutive frames, c) phonetic segments really do need to be fur-
ther divided into 3 states. We evaluate hypothesis b) by using
the whole phone DNN AM but by replicating each state in the

Figure 3: DET curves for 5x32 whole phone DNN models with
varying minimum duration constrains.

Figure 4: Baseline 5x32 DNN with 3 states/phone operated at
lower frame-rates.

trigger phrase HMM by a factor multiple, which is equivalent
to imposing a minimum duration on each of the labels (Figure
3). We observe that we are able to achieve similar accuracies as
the baseline with the additional minimum duration constrains.
These observations are similar to the ones made for an LSTM
based LVCSR system with whole phone units [19]. Addition-
ally, rather than simply replicating HMM states by the same fac-
tor, duration models for each state can be learnt independently.

4. Low Frame Rate Models
There is an alternative way to impose longer minimum dura-
tions for each state: run the detector at a lower rate than 100
FPS. This results in longer intervals between predictions, which
effectively increases the minimum duration of the HMM states.
Previously, LSTM RNN models trained with the CTC objec-
tive with context dependent (CD) whole phone targets have
been shown to work well when running the AM at 33 FPS
[21]. It is hypothesised that this works for 2 reasons. Firstly,
the LSTM RNN models maintain an internal state, which helps
them make predictions conditioned on longer input time-scales.
Secondly, making fewer predictions reduces the space of pos-
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Figure 5: DET curves for the whole phone DNNs at varying
frame-rates.

Figure 6: FR rate calculated at 1 FA/hour as a function of op-
erations/second. The blue 5x32 model yields the same accuracy
at a much lower compute compared to the red 5x32. While the
blue 5x{48,64,96} models yield better accuracies while still at
lower compute than the baseline model.

sible alignments that the CTC cost function sums over and im-
proves model training [21]. More recently, it has been shown
that LSTM RNN models trained with the cross-entropy crite-
rion can also be operated at lower frame rates when trained to
output phone labels [22].

For on-device KWS, operating the detectors at a lower
frame-rate is an attractive route for trying to limit the computa-
tion performed by the system. Although previous studies show
good results with LSTM RNNs, for the power/accuracy regime
of interest, we find simple DNN AMs most effective. In exper-
iments not reported here, we found no advantage in accuracy
from using an LSTM with a single layer and 32 cells which
contains 3 times the number of weights and computations as a
5x32 DNN. We compensate for the lack of recurrent connec-
tions by supplying the DNNs with 19 consecutive frames as in-
put (as before) or roughly 200 ms of audio, which is typically
longer than the duration of a phone. In order to run the models
at lower frame-rates, we still perform the front-end computation
at 100 FPS and stack 19 frames, but we move along to the next

Figure 7: FR rate as a function of the stride between consecutive
input windows @ 1 FA/hour.

window with a stride s ∈ {2, 3, 4, 5, 6, 7} rather than s = 1.
Figure 5 shows the results from running the 5x32 DNN model
at varying frame-rates. We observe that the model yields similar
accuracies as the baseline 3 states/phone DNN at a frame-rate
of up to 16.6 FPS. We also note that accuracies increase with
increasing stride up to s = 5. This reduces the computation
performed by the system by a factor of 6 without compromis-
ing accuracy. Alternatively, it allows us to use a model with
6 times as many parameters, which roughly corresponds to the
number of parameters in a 5x96 DNN. The 5x96 DNN at 16.6
FPS yields 40% relative improvement in FR rate at 1 FA/hour
compared to the baseline 5x32 DNN detector at 100 FPS, for
roughly the same amount of compute. Figure 6 shows the FR
rate as a function of the operations/second while Figure 7 shows
the FR rate calculated at 1 FA/hour as a function of the stride.
We note the results are consistent over a range of model sizes.

5. Conclusion
We presented a DNN-HMM system for on-device KWS in low-
resource conditions. Our results demonstrate that for a voice
trigger detection problem it is not necessary to divide phone
labels into 3 states for the beginning, middle and end of each
phone. We are able to achieve similar results to the baseline
with a single label per phone and minimum duration constrains.
This principle has been previously demonstrated for LVSCR
with LSTM AMs, but our results demonstrate that the same
holds true for DNN AMs with large input windows. As a practi-
cal consequence, we are able to run the detectors at frame-rates
as low as 16.6 FPS without any loss in accuracy compared to
the baseline. This represents a factor of 6 reduction in compu-
tation, which is significant when the system is deployed on low
resource hardware. Alternatively we can run a detector 6 times
as large as the baseline without any extra computation.

2095



6. References
[1] Apple Machine Learning Blog, “Hey Siri: An On-device

DNN-powered Voice Trigger for Apples Personal Assistant,”
https://machinelearning.apple.com/2017/10/01/hey-siri.html, Oc-
tober 2017.

[2] E. Marchi, S. Shum, K. Hwang, S. Kajarekar, S. Sigtia,
H. Richards, R. Haynes, Y. Kim, and J. Bridle, “Generalised dis-
criminative transform via curriculum learning for speaker recog-
nition,” in Proceedings IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP. Calgary, Canada:
IEEE, April 2018, pp. –, to appear.

[3] J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Continuous
Hidden Markov Modeling for Speaker-Independent Word Spot-
ting,” in International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP). IEEE, 1989, pp. 627–630.

[4] R. C. Rose and D. B. Paul, “A Hidden Markov Model Based
Keyword Recognition System,” in International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). IEEE,
1990, pp. 129–132.

[5] S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Mandal,
B. Hoffmeister, and S. Vitaladevuni, “Multi-Task Learning and
Weighted Cross-Entropy for DNN-Based Keyword Spotting,” in
INTERSPEECH, 2016, pp. 760–764.

[6] M. Sun, D. Snyder, Y. Gao, V. Nagaraja, M. Rodehorst, N. S.
Panchapagesan, S. Matsoukas, and S. Vitaladevuni, “Compressed
Time Delay Neural Network for Small-footprint Keyword Spot-
ting,” INTERSPEECH, pp. 3607–3611, 2017.

[7] G. Chen, C. Parada, and G. Heigold, “Small-Footprint Key-
word Spotting Using Deep Neural Networks,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014, pp. 4087–4091.

[8] T. N. Sainath and C. Parada, “Convolutional Neural Networks
for Small-Footprint Keyword Spotting,” in Sixteenth Annual Con-
ference of the International Speech Communication Association,
2015.

[9] G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, and S. Vita-
ladevuni, “Model Compression Applied to Small-Footprint Key-
word Spotting.” in INTERSPEECH, 2016, pp. 1878–1882.

[10] S. Fernández, A. Graves, and J. Schmidhuber, “An Application
of Recurrent Neural Networks to Discriminative Keyword Spot-
ting,” in International Conference on Artificial Neural Networks.
Springer, 2007, pp. 220–229.

[11] M. Woellmer, B. Schuller, and G. Rigoll, “Keyword Spotting
Exploiting Long Short-term Memory,” Speech Communication,
vol. 55, no. 2, pp. 252–265, 2013.

[12] S. O. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky,
C. Fougner, R. Prenger, and A. Coates, “Convolutional Recurrent
Neural Networks for Small-Footprint Keyword Spotting,” arXiv
preprint arXiv:1703.05390, 2017.

[13] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Man-
dal, S. Matsoukas, N. Strom, and S. Vitaladevuni, “Max-pooling
Loss Training of Long Short-term Memory Networks for Small-
footprint Keyword Spotting,” in Spoken Language Technology
Workshop (SLT), 2016 IEEE. IEEE, 2016, pp. 474–480.

[14] Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin, and
I. McGraw, “Streaming Small-Footprint Keyword Spotting us-
ing Sequence-to-Sequence Models,” in IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU). IEEE, 2017,
pp. –.

[15] J. S. Bridle, “Probabilistic Interpretation of Feedforward Classifi-
cation Network Outputs, with Relationships to Statistical Pattern
Recognition,” in Neurocomputing. Springer, 1990, pp. 227–236.

[16] H. A. Bourlard and N. Morgan, Connectionist Speech Recogni-
tion: A Hybrid Approach. Springer Science & Business Media,
2012, vol. 247.

[17] X. Glorot and Y. Bengio, “Understanding the Difficulty of Train-
ing Deep Feedforward Neural Networks,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics, 2010, pp. 249–256.

[18] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed
of neural networks on cpus,” in Deep Learning and Unsupervised
Feature Learning Workshop, NIPS 2011, 2011.

[19] A. Senior, H. Sak, and I. Shafran, “Context Dependent Phone
Models for LSTM RNN Acoustic Modelling,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 4585–4589.

[20] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays, and
J. Schalkwyk, “Learning Acoustic Frame Labeling for Speech
Recognition with Recurrent Neural Networks,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 4280–4284.

[21] H. Sak, F. de Chaumont Quitry, T. Sainath, K. Rao et al., “Acous-
tic modelling with CD-CTC-SMBR LSTM RNNs,” in IEEE
Workshop on Automatic Speech Recognition and Understanding
(ASRU). IEEE, 2015, pp. 604–609.

[22] G. Pundak and T. N. Sainath, “Lower Frame Rate Neural Network
Acoustic Models,” in INTERSPEECH, 2016, pp. 22–26.

2096


