
Conditional-Computation-Based Recurrent Neural Networks for
Computationally Efficient Acoustic Modelling

Raffaele Tavarone1, Leonardo Badino1

1Center for Translational Neurophysiology of Speeech and Communication
raffaele.tavarone@iit.it, leonardo.badino@iit.it

Abstract
The first step in Automatic Speech Recognition (ASR) is a
fixed-rate segmentation of the acoustic signal into overlapping
windows of fixed length. Although this procedure allows to
achieve excellent recognition accuracy, it is far from being com-
putationally efficient, in that it may produce a highly redundant
signal (i.e, almost identical spectral vectors may span many ob-
servation windows) that converts into computational overload.
The reduction of such overload can be very beneficial for appli-
cation such as offline ASR on mobile devices.

In this paper we present a principled way for saving numer-
ical operations during ASR by using conditional-computation
methods in deep bidirectional Recurrent Neural Networks
(RNNs) for acoustic modelling. The methods rely on learned
binary neurons that allow hidden layers to be updated only when
necessary or to keep their previous value.

We (i) evaluate, for the first time, conditional computation-
based recurrent architectures on a speech recognition task, and
(ii) propose a novel model specifically designed for speech data
that inherently builds a multi-scale temporal structure in the hid-
den layers. Results on the TIMIT dataset show that conditional
mechanisms in recurrent architectures can reduce hidden layer
updates up to 40% at the cost of about 20% relative phone error
rate increase.
Index Terms: speech recognition, computational efficiency,
conditional computation, recurrent neural network.

1. Introduction
In recent years deep bidirectional RNN’s have set the state-of-
the-art performance in several ASR tasks [1, 2, 3, 4, 5, 6]. RNNs
are indeed intrinsically well suited to deal with the dynamical
structure of speech due to their internal memory, which allows
to capture long-term dependencies in the input signal.

Whether an RNN is integrated into a hybrid RNN-HMM
ASR system or is itself an end-to-end [7] ASR system, its in-
put is the result of a fixed-rate (typically 100Hz), fixed window
length (typically 25ms) windowing of the acoustic signal.

Although the fixed-rate segmentation scheme allows ex-
cellent performances in many ASR task, it has some draw-
backs. For example, relevant but very short-timed event within a
speech signal (e.g. peak or stop consonant) may be averaged out
in a too-long observation window [8], a problem that we will not
address here. In the opposite case, long duration speech sounds
“sampled” every 10ms generate redundant vectors of spectral
features (e.g., redundant vectors of MFCCs). During recog-
nition, this redundancy in the input features directly translates
into a remarkable amount of superfluous numerical operations.
In the past, the limitations imposed by the fixed-rate segmenta-
tion scheme inspired the so called segment-based ASR methods
[9, 10, 11] that, in contrast to our approach, do not focus primar-
ily on computational efficiency as they typically require many

more decoding operations than frame-based systems.
Additionally, the multi-timescale structure of speech [12,

13] along with the multiple levels of abstraction learned by deep
neural networks [14] suggests that the deeper layers may encode
features with a characteristic timescale longer than that of the
lower layers. Nonetheless, in standard deep RNN all the hid-
den layers are updated at the same rate, a possible supplemen-
tary source of unnecessary computational cost. All the previous
considerations motivated us to apply conditional computation
methods in deep bidirectional RNNs to perform computation-
ally efficient ASR.

The idea of introducing conditional computation in deep
neural networks is relatively recent [15, 16]. It consists in
the dropping of a portion of the network internal computations
in a dynamic (as it depends on time-varying conditions) and
learned (as opposed to dropout) fashion. Conditional compu-
tation has been used to increase computationally efficiency in
feed-forward neural networks [17], to train deep mixture-of-
experts [18] and to efficiently control the updating schedule of
recurrent neural network [19, 20, 21]. Previous work on compu-
tationally efficient feed-forward deep neural networks for ASR
relies on low-rank matrix factorization to reduce the model size
[22], teacher-student paradigm [23], and multiframe methods
where the network either simply skips labels estimations one
over two frames or predicts labels of both next and current
frames [24]. Another relevant approach is time delay neural net-
works, whose hidden activations can be sub-sampled following
a predefined, not learned, scheme [25].

In this work, for the first time, we apply conditional compu-
tation on deep bidirectional RNNs for acoustic modelling. We
considered bidirectional implementations of two conditional ar-
chitectures, Hierarchical-Multiscale LSTM (HM-LSTM) [19]
and Skip-GRU [21] and propose a variant of the HM-LSTM,
named constrained Hierarchical-Multiscale Hard-Gated Recur-
rent Unit (cHM-HGRU).

While in a Skip-GRU the decision on whether to update or
skip updating (thus keeping previous values) applies to all its
hidden layers at once, in a HM-LSTM the decision is applied to
each hidden layer separately. Despite HM-LSTM outperformed
Skip-GRU in our experiments, it often exhibited an unstable
training and actually performed a hidden layer pruning rather
than extracting a hierarchical multi-scale temporal representa-
tion.

We hypothesize that the much noisier nature of the speech
signal and the lack of clear boundaries as opposed to, e.g.,
text (where word, phrase and sentence boundaries are usually
marked by special characters) hamper HM-LSTM training and
some prior knowledge of the structure of speech has to be inte-
grated (especially when training data is not huge as in our ex-
periments). To this end we propose a new model, cHM-HGRU,
that applies changes to the original HM-LSTM, including sim-
ple priors on inter-dependencies between gates of different lay-

Interspeech 2018
2-6 September 2018, Hyderabad

1274 10.21437/Interspeech.2018-2195

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/2195.html

ers.
We integrated all three architectures in a hybrid RNN-

HMM system and tested their accuracy and capability of saving
computation in a phone recognition task on TIMIT.

2. Models
2.1. Proposed model

Our proposed model is based on Gated Recurrent Units (GRUs).
A GRU is a recurrent unit that handles the vanishing/exploding
gradient problem [26] by employing a gating mechanism that
updates state ht by modulating the memory carried by the re-
current connections. The GRU architecture is defined as fol-
lows:

ht = (1− zt)� ht−1 + zt � h̃t (1a)

zt = σ(Wzxt + Uzht−1 + bz) (1b)

rt = σ(Wrxt + Urht−1 + br) (1c)

h̃t = tanh(Whxt + Uhrt � ht−1 + bh) , (1d)

where xt ∈ RD , {ht, zt, rt, h̃t,ht} ∈ Rd, W ∈ Rd×D ,
U ∈ Rd×d, and 1 ∈ Rd is a vector of all ones. � denotes
element-wise multiplication and σ(x) is the sigmoid function
(applied element-wise). In a GRU, the update gate zt and the
reset gate rt are learned to filter the information contained in
the previous state ht−1. These gates are soft, thus a previous
state is never entirely conveyed and Eqs. (1) are evaluated anew
even when the speech signal is redundant. Here we formalize a
model that implements computational efficiency by using hard-
gated recurrent units.

Our model, cHM-HGRU, is a bidirectional variant of the
HM-LSTM [19] that (i) is based on GRUs rather than LSTM
cells in order to reduce computation, number of parameters and
simplify the hard-gating mechanisms and (ii) imposes a multi-
scale structure of the internal states of the network by constrain-
ing deeper layers to be updated less frequently than lower ones.

For sake of space we describe cHM-HGRU starting from
the GRU definition rather than from HM-LSTM. Given a verti-
cal stack of L recurrent layers, the update rule of the l-th hidden
layer, hl

t ∈ Rd, at time t is defined, for the forward network, as:

hl
t = (1− zlt)[(1− zl−1

t)hl
t−1 + zl−1

t ul
t] + zltf

l
t , (2)

with

ul
t = tanh

(
LN (U l

l−1h
l−1
t + U l

l (r
l
t � hl

t−1))
)

(3a)

rlt = σ
(
LN (Rl

l−1h
l−1
t +Rl

lh
l
t−1)

)
(3b)

f lt = tanh
(
LN (W l

l+1h
l+1
t−1 +W l

l−1h
l−1
t)

)
. (3c)

Assuming that all layers have the same dimensionality, Uk
h ∈

Rd×d, W k
h ∈ Rd×d, Rk

h ∈ Rd×d for the weights matrices
connecting layer h with layer k, and ul

t ∈ Rd, rlt ∈ Rd, and
f lt ∈ Rd. The function LN () performs layer normalization as
in [27] by scaling and recentering the pre-activations. The back-
ward recurrent network is defined analogously over the reversed
input sequence.

The term in square brackets on the right-hand side of (2) is
analogous to (1a) of the standard GRU, with the sigmoid vec-
tor controlling the gate replaced by a binary scalar. The z’s in
(2) are binary units that can be broadly interpreted as boundary
detectors and are defined as:

zlt = zl−1
t fround(z̃lt) (4)

Figure 1: Gating mechanism of the proposed model.

with

z̃lt = hardsigm(V l
l h

l
t−1 + V l

l−1h
l−1
t + blz) . (5)

We use V k
h ∈ R1×d, bz ∈ R and fround(x) is given by

fround(x) =

{
1 if x ≥ 0.5

0 if x < 0.5 .
(6)

The hard-sigmoid function, hardsigm(x) =

max(0,min(1, (ax+1)
2

)), is a piecewise-linearized ver-
sion of the standard sigmoid with slope a, previously used for
binary neurons [17]. The layer normalization in Eqs. (3a-3c)
is essential to avoid quick saturation of the binary units during
training. Hard gates can be interpreted as boundary detectors,
where zlt = 1 corresponds to the detection of a boundary at
time t and at layer l.

The presence of zl−1
t in (4) is the second main difference

w.r.t. HM-LSTM. It imposes a constraint on the boundary de-
tection in that the model is allowed to find a boundary at layer
l only if a boundary is present at the layer below. In our ex-
periments we found that, despite being formally modest, this
constraint is essential to obtain a proper hierarchical-multiscale
structure of the network when dealing with speech data.

Like HM-LSTM, cHM-GRU has three operational modali-
ties : COPY, UPDATE and FLUSH (see Fig. 1). The COPY op-
eration is performed when no boundary is detected at the lower
layer, which also implies no boundary at the current level be-
cause of (4). COPY is thus activated when no relevant changes
are detected and it copies hl

t−1 into hl
t.

When a boundary is detected in the layer below but there
is no boundary in the current layer, an UPDATE is performed,
which resembles a standard recurrent operation.

Finally, the FLUSH operation is performed when a bound-
ary is detected at both levels. The additional boundary at layer
l cuts the recurrent connection and sends to the current layer a
summary of the previous states only through the top-down con-
nection (when l < L). To understand the possible utility of
a top-down connection in the FLUSH operation, imagine hl

t−1

being the encoding of some kind of speech unit (e.g., something
resembling a phonetic state) and hl+1

t−1 the encoding of it plus its
left context. When a boundary is detected, a new encoding hl

t

for the new unit has to be computed, and the computation has
to take into account the co-articulation effects due to the left
context.

By disregarding the recurrent links, the FLUSH operation
introduces a trade-off mechanism between the number of recog-
nized boundaries and the contextual information carried along
by the network. As every boundary can trigger either an UP-
DATE or a FLUSH operation, the model has to find a balance
between the number of state updates and the discard of past

1275

knowledge. Indeed, when experimenting with an hard-gated re-
current unit without the flush module we found that the model
either performs very poorly or does not save any computation.

Assuming that the classification problem has n classes, the
output yt ∈ Rn of the model is a non-linear classifier that takes
as input all the layers in the hierarchy from both the forward
and the backward nets. It is defined as:

yt = softmax
(
ReLu

(L∑

l=1

(Ol
fw

−→
h l

t +Ol
bw

←−
h l

t)
))

(7)

with Ol
fw, O

l
bw ∈ Rn×d, softmax(yj) = eyj/

∑N
k=1 yk and

where ReLu(x) = max(0, x). The
−→
h l

t and
←−
h l

t refer to the hid-
den layers of the forward and backward network, respectively.
Note that in (7) we do not weight each layer with a different
scalar function as in [19] because in our experiments this ap-
pears to induce a tremendous pruning of the deeper layers, thus
compromising the hierarchical structure.

2.2. Previous work models

Considered previously proposed models are HM-LSTM and
Skip-GRU. Because of space constraints HM-LSTM cannot be
described here, but an idea of their structure can be inferred
from previous section and a comprehensive account can be
found in [19].

Skip-GRU , instead of detecting boundaries at each hidden
layer, directly learns to skip input frames (which is equivalent
to detecting a boundary shared by all the hidden layers). We
give here a short summary of the method and refer the inter-
ested reader to [21] for details. The state st of the Skip-GRU is
defined as

st = utht + (1− ut)st−1 (8)

where ht is a standard GRU state as in (1a) and

ut = fround(ũt) , (9a)

∆ũt = σ(Wpst + bp) , (9b)

ũt+1 = ut∆ũt + (1− ut)(ũt + min(∆ũt, 1− ũt)) . (9c)

Thus, the Skip-GRU either (i) evaluates a standard GRU or (ii)
copies the previous state with a probability that decreases with
the number of consecutively skipped timesteps. The overall
number of skipped samples is controlled during training by an
hyper-parameter λ that weights a secondary term of the objec-
tive function, Lskip = λ

∑
t ut. We implement a bidirectional

version of the model by linearly combining the outputs of the
independent forward and backward RNNs.

3. Experimental setup
3.1. Phone recognition systems

The phone recognition systems are hybrid RNN-HMM systems
trained and evaluated on the TIMIT dataset. Phone state align-
ments for RNN training where obtained using the Kaldi [28]
s5 recipe. Triphone state alignments computed using the tri3
models were mapped into monophone state alignments. Input
features are 40 mel-filter banks plus deltas and delta-deltas.

3.2. RNN architectures

We evaluated three bidirectional RNN architectures with con-
ditional computation: HM-LSTM [19], our cHM-HGRU, and

Skip-GRU. These models are compared to two standard re-
current architectures, bidirectional LSTM with peephole con-
nections [2] and bidirectional GRU. In both standard RNNs,
the input of a hidden layer is the combination of the forward
and backward outputs of the layer below. In the Hierarchical-
Multiscale architectures, the top-down connection forces the
forward and the backward networks to be independent.

3.3. Training strategy

All networks were trained using the cross-entropy loss and
cross-entropy was minimized using standard back-propagation
through time.

However, for conditional computation networks, the deriva-
tive of (6) is almost always zero except at the threshold, where
it is infinite. Hence, the gradient can newer flow through it.
To handle this problem several methods have been employed in
previous work [16, 17, 29, 19]. Here we use a strategy called
straight-through estimator that consists in simply replacing the
derivative of the non-smooth function with

dfround(x)

dx
= 1 . (10)

Thus, in the backward pass we just propagate the gradient
through the fround(x) as if it were the identity function. This
method is known to introduce a bias in the gradient estimation,
but it has nonetheless been proven to ensure effective training
[16, 17, 29, 19]. Additionally, we gradually increase the slope a
of the hard-sigmoid function following a predefined schedule so
that it gradually becomes closer to the step function, a method
known as slope-annealing trick.

The model’s parameters were updated using Adam opti-
mizer [30] with β1 = 0.9, β2 = 0.999, ε = 1.0e − 08, and
learning rate 10−4 over batches of one utterance. All weights
were initialized by random sampling from an uniform distribu-
tion between −0.1 and 0.1. All biases were initialized to 0.0
except for the biases of the reset gates that were initialized to
1.0. To implement the slope-annealing trick we started with
a = 1.0 and add 3.0e− 05 at every optimization step. We used
early stopping on the development set.

4. Results
Table 1 summarizes our results. The reported frame-level er-
ror rate (FER) and phone error rate (PER) refer to an average
over 3 runs with different random initialization. We designed
our model to be used in a generic mini-batch setting, where an
efficient implementation of conditional operations could not be
implemented. Thus, for each layer we report the test set average
of the percentage of copies-per-layer (defined as the percentage
of copies over the total number of frames in an utterance, av-
eraged on the forward and backward networks) as a proxy for
computational efficiency.

The best-performing model is the bidirectional LSTM,
which is also the model with the largest number of parame-
ters. The bidirectional GRU reduces the number of parame-
ters by ≈ 38% while giving a 4.3% relative increase in PER.
Both models however evaluate the full set of parameters at ev-
ery timestep (percentage of copies-per-layer is always 0).

The bidirectional HM-LSTM achieved a 22.8% PER on the
test set, but a closer investigation reveals that the expected inter-
nal hierarchical structure is wiped out in this task. In a proper
multiscale scenario [19] the number of copies-per-layer must
monotonically increase when moving from lower to deeper lay-

1276

Table 1: Average FER, PER and rate of per-layer copies on TIMIT development and test set.

Model L d Num. % Copies per layer (Test-set average) Dev Test Dev Test
Params. l = 1 l = 2 l = 3 l = 4 l = 5 FER (%) FER (%) PER (%) PER (%)

Bi-LSTM [2] 5 250 8M 0.0 0.0 0.0 0.0 0.0 30.7 ± 0.2 31.8 ± 0.2 17.8 ± 0.1 18.7 ± 0.2

Bi-GRU 5 250 5M 0.0 0.0 0.0 0.0 0.0 31.8 ± 0.2 32.9 ± 0.3 17.8 ± 0.1 19.5 ± 0.2

Bi-HM-LSTM 5 250 8M 0.0 2.8 17.5 99.4 83.0 35.6 ± 1.5 36.2 ± 1.3 21.6 ± 2.0 22.8 ± 1.7

Bi-cHM-HGRU 5 250 4M 0.0 16.1 43.7 62.9 73.2 35.7 ± 0.1 36.3 ± 0.0 21.3 ± 0.3 22.5 ± 0.4

Bi-Skip-GRU 5 250 4M 10.1 10.1 10.1 10.1 10.1 35.5 ± 0.3 36.1 ± 0.1 20.9 ± 0.1 22.5 ± 0.0
λ = 1.0e−04

Bi-Skip-GRU 5 250 4M 38.2 38.2 38.2 38.2 38.2 37.9 ± 0.0 38.8 ± 0.0 22.1 ± 0.4 23.4 ± 0.1
λ = 5.0e−04

Bi-Skip-GRU 5 250 4M 59.3 59.3 59.3 59.3 59.3 41.1 ± 0.0 41.7 ± 0.0 23.1 ± 0.5 24.7 ± 0.5
λ = 1.0e−03

ers because the corresponding hierarchical levels span increas-
ingly long time intervals. As can be seen in Table 1, the number
of copies-per-layer in the HM-LSTM is unstructured. More-
over, it turned out that the model tends to perform a pruning
of the deeper layers instead of building an internal multiscale
structure, which sometimes results in numerical instability dur-
ing training.

Our interpretation of this result is based on the observa-
tion that in all previous tasks where the HM-LSTM has been
tested [19], the learned boundaries are aligned with a well de-
fined break-point in the sequential data (e.g. a blank character
in the character-level language model). The speech signal does
not have such clear markers of its structure, which we speculate
would act as anchor points for the boundary detectors. We can-
not exclude however that the small size of TIMIT also plays a
role in the vanishing of the multiscale organization.

The bidirectional cHM-HGRU, reaches a 22.5% PER while
simultaneously halving the number of parameters to ≈ 4 mil-
lions and recovering a proper hierarchical multiscale structure.
The number of copies-per-layer gradually increases with the
layer depth until it reaches the ≈ 73% of copies on the deeper
layer. To better demonstrate the hierarchical structure of the in-
ternal states we plot them in Fig. 2 for a portion of a TIMIT test
utterance.

Finally, we report the performances of the bidirectional
Skip-GRU with three different values of the hyper-parameter λ
that controls the computational budget. Since Skip-GRU learns
to fully skip input frames, the percentage of copies is the same
for all layers. As expected, PER increases with increasing com-
putational saving rates. At an approximately equal overall com-
putational load, Skip-GRU performs worse than cHM-HGRU
and HM-LSTM.

In the future we plan to evaluate the performances of the
presented architectures over larger dataset and to integrate con-
ditional computation into end-to-end training strategies as con-
nectionist temporal classification [3] or sequence-to-sequence
models [31], where we expect the stable hierarchical structure
of the cHM-HGRU to be beneficial.

5. Conclusion
In this work we evaluated, for the first time, conditional compu-
tation deep RNN for acoustic modelling. Our aim was to exploit
conditional computation to increase computational efficiency
during inference. We experimented with 2 previous work mod-
els, Hierarchical-Multiscale LSTM and Skip-GRU, and a pro-

Figure 2: Internal states of our proposed model (forward net-
work) versus time for a portion of a TIMIT test utterance. La-
bels and predictions are shown at the bottom and at the top
of the plot respectively, with a different color for each classe.
The color-coded L1 norms of the hidden layers are used to suc-
cinctly visualize their internal activation in a single scalar. The
z’s are black when z = 1 and yellow when z = 0. The COPY
operation is performed only when zl−1 = 0 and zl = 0, result-
ing in no change of color of ||hl|| .

posed variant of HM-LSTM, namely constrained Hierarchical-
Multiscale Hard-GRU, on a phone recognition task on the
TIMIT dataset. Their accuracy and computational efficiency
was compared to those of standard LSTM and GRU.

Both HM-LSTM and cHM-HGRU outperform Skip-GRU
while matching its computational load. Results show that while
our proposed model cHM-HGRU matches HM-LSTM accuracy
it has the following advantages: (i) it retains a proper hierarchi-
cal multiscale structure, (ii) it exhibit stable training, and (iii)
it has half of the parameters. All of the discussed methods fit
especially well for applications where a small portion of accu-
racy can be dropped in exchange for numerical efficiency, as in
offline ASR for mobile devices.

6. Acknowledgements
The authors acknowledge the support of the European Unions
Horizon2020 project ECOMODE (grant agreement No 644096)
and thank Chiara Bartolozzi for inspiring discussions.

1277

7. References
[1] D. Yu and L. Deng, Automatic Speech Recognition - A Deep

Learning Approach. Springer, 2016.

[2] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recogni-
tion with deep bidirectional lstm,” in Automatic Speech Recogni-
tion and Understanding (ASRU), 2013 IEEE Workshop on. IEEE,
2013, pp. 273–278.

[3] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Acoustics, speech and
signal processing (icassp), 2013 ieee international conference on.
IEEE, 2013, pp. 6645–6649.

[4] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Fifteenth annual conference of the international speech
communication association, 2014.

[5] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott,
R. Monga, and M. Mao, “Sequence discriminative distributed
training of long short-term memory recurrent neural networks,”
in Fifteenth annual conference of the international speech com-
munication association, 2014.

[6] F. Weninger, J. Geiger, M. Wöllmer, B. Schuller, and G. Rigoll,
“Feature enhancement by deep lstm networks for asr in reverber-
ant multisource environments,” Computer Speech & Language,
vol. 28, no. 4, pp. 888–902, 2014.

[7] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding,” in
Automatic Speech Recognition and Understanding (ASRU), 2015
IEEE Workshop on. IEEE, 2015, pp. 167–174.

[8] B. Lee and K.-H. Cho, “Brain-inspired speech segmentation for
automatic speech recognition using the speech envelope as a tem-
poral reference,” Scientific reports, vol. 6, p. 37647, 2016.

[9] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental
neural networks for speech recognition.” in Interspeech, vol. 36,
2013, p. 70.

[10] L. Lu, L. Kong, C. Dyer, N. A. Smith, and S. Renals, “Segmental
recurrent neural networks for end-to-end speech recognition,”
in Interspeech 2016, 2016, pp. 385–389. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2016-40

[11] J. R. Glass, “A probabilistic framework for segment-based speech
recognition,” Computer Speech & Language, vol. 17, no. 2-3, pp.
137–152, 2003.

[12] A.-L. Giraud and D. Poeppel, “Cortical oscillations and speech
processing: emerging computational principles and operations,”
Nature neuroscience, vol. 15, no. 4, p. 511, 2012.

[13] J. E. Peelle and M. H. Davis, “Neural oscillations carry speech
rhythm through to comprehension,” Frontiers in psychology,
vol. 3, p. 320, 2012.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[15] Y. Bengio, “Deep learning of representations: Looking forward,”
in International Conference on Statistical Language and Speech
Processing. Springer, 2013, pp. 1–37.

[16] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propa-
gating gradients through stochastic neurons for conditional com-
putation,” arXiv preprint arXiv:1308.3432, 2013.

[17] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks,” in Advances in neural informa-
tion processing systems, 2016, pp. 4107–4115.

[18] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le,
G. Hinton, and J. Dean, “Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer,” arXiv preprint
arXiv:1701.06538, 2017.

[19] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recur-
rent neural networks,” arXiv preprint arXiv:1609.01704, 2016.

[20] A. S. Davis and I. Arel, “Faster gated recurrent units via con-
ditional computation,” in Machine Learning and Applications
(ICMLA), 2016 15th IEEE International Conference on. IEEE,
2016, pp. 920–924.

[21] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang,
“Skip rnn: Learning to skip state updates in recurrent neural net-
works,” arXiv preprint arXiv:1708.06834, 2017.

[22] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ram-
abhadran, “Low-rank matrix factorization for deep neural network
training with high-dimensional output targets,” in 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2013, pp. 6655–6659.

[23] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size
dnn with output-distribution-based criteria,” in Fifteenth Annual
Conference of the International Speech Communication Associa-
tion, 2014.

[24] V. Vanhoucke, M. Devin, and G. Heigold, “Multiframe deep
neural networks for acoustic modeling,” in 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2013, pp. 7582–7585.

[25] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Interspeech, 2015.

[26] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in International Conference on
Machine Learning, 2013, pp. 1310–1318.

[27] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[28] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. EPFL-
CONF-192584. IEEE Signal Processing Society, 2011.

[29] A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals,
J. Agapiou et al., “Strategic attentive writer for learning macro-
actions,” in Advances in neural information processing systems,
2016, pp. 3486–3494.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[31] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on. IEEE, 2016,
pp. 4960–4964.

1278

