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Abstract
Mixup is a recently proposed technique that creates virtual
training examples by combining existing ones. It has been
successfully used in various machine learning tasks. This pa-
per focuses on applying mixup to automatic speech recogni-
tion (ASR). More specifically, several strategies for acoustic
model training are investigated, including both conventional
cross-entropy and novel lattice-free MMI models. Considering
mixup as a method of data augmentation as well as regulariza-
tion, we compare it with widely used speed perturbation and
dropout techniques. Experiments on Switchboard-1, AMI and
TED-LIUM datasets shows consistent improvement of word er-
ror rate up to 13% relative. Moreover, mixup is found to be par-
ticularly effective on test data mismatched to the training data.
Index Terms: speech recognition, mixup, acoustic model train-
ing, data augmentation, regularization, lattice-free MMI

1. Introduction
Nowadays, acoustic models based on neural networks play a
dominant role in automatic speech recognition (ASR) [1–3].
These networks are usually trained by minimizing average loss
function, such as Cross-Entropy (CE), over the training data.
This leads to the problem: the network tries to memorize instead
of generalize from the data [4]. As a consequence, prediction
accuracy decreases drastically on test data which are outside of
the training distribution. There are many techniques for improv-
ing the generalization ability, such as data augmentation (e.g.
speed and volume perturbation [5], vocal tract length perturba-
tion [6]), and regularization (e.g. dropout training [7]).

One of these techniques is so-called mixup, recently pro-
posed in [4]. This technique constructs virtual training ex-
amples by combining linearly both input features and output
labels. Mixup demonstrated impressive effectiveness in var-
ious machine learning tasks, such as image data classifica-
tion (ImageNet-2012 [8], CIFAR-10/100 [9]), tabular data clas-
sification (UCI [10]), and speech recognition (Google com-
mands [11]). However, the speech recognition task consid-
ered in [4] was very small and simple: it consisted of 65,000
1-second long utterances representing one of 30 speech com-
mands. On the other hand, actual ASR tasks containing hun-
dreds of hours of continuous speech are much more challeng-
ing.

This paper is focused on exploring mixup technique for
acoustic model training on large-scale ASR tasks. Three pop-
ular ASR benchmarks representing various aspects of speech
recognition are considered: Switchboard-1 [12] (conversa-
tional telephone speech), TED-LIUM [13] (lectures), and

AMI [14] (meetings, distant conversational speech). We report
consistent WER reduction on all these tasks.

Today most widely used acoustic models are based on re-
current neural networks (e.g. Long Short-Term Memory net-
works, LSTM [15–17]), which are trained to classify Hidden
Markov Model (HMM) states on long sequences instead of in-
dependent frames. Therefore, a sequence of features and cor-
responding supervision is considered as a training example.
For CE training, supervision is just a sequence of class labels.
However, speech recognition is inherently a sequence classifica-
tion problem, so acoustic models trained using CE criterion are
suboptimal in terms of WER. Sequence-discriminative train-
ing designed to handle this problem obtains significant WER
improvement in many tasks [18–20]. Traditionally this is per-
formed by retraining CE-trained model using one of sequence-
discriminative criteria, for example state-level Minimum Bayes
Risk (sMBR) [18]. On the other hand, the recently proposed
Lattice-Free Maximum Mutual Information (LF-MMI) [21] ap-
proach allows to carry out sequence-discriminative training
from scratch, without CE pre-training stage. LF-MMI has a
number of advantages over traditional sequence-discriminative
training, and it provides better recognition accuracy. Various
schemes of employing mixup training in both CE and LF-MMI
frameworks are explored in this paper.

Considering mixup as both data augmentation and regular-
ization technique, we compared it with widely used speed per-
turbation [5] data augmentation technique and dropout [7] regu-
larization technique. Other important aspects of applying mixup
in training of ASR acoustic model are studied as well.

The rest of the paper is organized as follows. In Section 2,
we discuss mixup and similar approaches. Strategies for apply-
ing mixup to acoustic model training are described in Section 3.
Section 4 describes experimental setup. Results of experiments
are presented in Section 5. Finally, Section 6 concludes the pa-
per and discusses future work.

2. Related Work
Lack of generalization is one of the most important problems of
neural networks. Due to this, performance may degrade drasti-
cally on test data unseen in the training process. There are nu-
merous approaches aimed at increasing the generalization abil-
ity of neural networks. These approaches can be divided into
two major groups.

The first group consists of data augmentation techniques
which try to increase the amount of training data through var-
ious modifications of original training dataset. This usually
leads to more precise representation of the input data distribu-
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tion, thereby improving the generalization ability of the trained
models.

The second group of approaches is regularization. Unlike
the data augmentation, these approaches operate on the train-
ing process level. As an example, the dropout technique ran-
domly removes part of connections in a neural network during
the training and thereby helps to avoid overfitting (memoriza-
tion). There are different schemes of applying the dropout tech-
nique to various machine learning tasks [7, 22]. Another pop-
ular regularization technique is batch normalization [23] which
normalizes the outputs of hidden layers.

Mixup is a new technique aimed at solving the overfitting
problem [4]. It combines arbitrarily chosen training samples
and their labels to generate new training data:

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

where xi, xj are raw input vectors, and yi, yj are one-hot label
encodings. Due to its nature, mixup encourages linear behavior
of neural networks on between-class data. Mixup can be con-
sidered as both data augmentation and regularization technique.
Moreover, it is additive to all aforementioned approaches and
can benefit from the combination with them.

3. Acoustic model training with mixup
This section describes various schemes for employing mixup
in acoustic model training. As already mentioned, we con-
sider a sequence of features and corresponding supervision as
a training example, instead of a features-label pair for individ-
ual frame.

3.1. Cross-Entropy Training

Supervision for cross-entropy acoustic model training is a se-
quence of 1-hot labels representing tied HMM states. Simplest
way to apply mixup for CE training is frame-by-frame inter-
polation of features and labels for two sequences, sharing the
same mixture weight across all frames (global scheme). The
second scheme is mixing of each frame in a sequence with a
randomly chosen frame near to the current, e.g. in 3 frames
(local scheme). We expect performance improvement using the
local scheme, because it allows smoother transitions between
the states. We also tried mixing features in a sequence with ran-
dom features having the same label (class scheme), and mixing
a sequence with itself shifted by several frames (shift scheme).

3.2. LF-MMI training

Supervision in LF-MMI is a numerator Finite State Accep-
tor (FSA) representing alternative pronunciation of the training
utterances and allowing a little “wiggle room” to vary from ref-
erence phone positions. Details on LF-MMI numerator graphs
can be found in paper [21] and in Kaldi “Chain” models docu-
mentation [24].

We suppose that, unlike CE case, combining of training ex-
amples is not sufficient to carry out mixup training for LF-MMI
models completely correctly. We propose the training proce-
dure called gradient mixup consisting of the following steps:

1. Doing forward propagation and computing numerator
occupancies separately for both combined sequences.

2. Mixing input sequences with weight λ and doing for-
ward propagation.

3. Computing denominator occupancies using posterior
probabilities corresponding to the mixed sequence.

4. Calculating error signals for both sequences and mixing
these errors with weight λ.

5. Back-propagating the resulting error signal.

The main disadvantage of this procedure is a very high compu-
tational cost. It can be simplified by omitting separate forward
propagation in the first step. In this case, numerator occupan-
cies for both sequences are calculated using mixed sequence
posterior probabilities (simplified gradient mixup).

We also considered applying mixup on the level of LF-MMI
training examples. In this approach features for 2 sequences are
combined identically to the global scheme described in Subsec-
tion 3.1. Numerator graphs are merged into one graph in a par-
allel way if both mixture weights are higher than the threshold.
Otherwise, the FSA corresponding to the sequence with higher
weight is taken. This approach provides less control on supervi-
sion mixing, but we assume that weighting is applied implicitly
during the forward-backward step. The following schemes for
weights scaling in the combined numerator graph are consid-
ered:

• No scaling: does not change weights of hypotheses in
the resulting FSA.

• Default scaling: modifies all hypotheses corresponding
to both combined sequences by adding penalties equal
to − lnλ and − ln (1− λ) respectively, where λ and
1− λ are mixture weights for these sequences.

• Balanced scaling: penalizes hypotheses corresponding
to a lower mixture weight, while rewards the ones corre-
sponding to higher mixture weight. Denoting the lower
weight as λ, the penalty (positive value) is equal to
0.5 (ln (1− λ)− lnλ) and the reward (negative value)
is equal to 0.5 (lnλ− ln (1− λ)).

This approach is easy to implement, as it does not require any
modifications in the training procedure. Furthermore, it is al-
most computationally free.

4. Experimental Setup
4.1. Datasets

Main experiments are conducted on the 300 hour Switchboard
English conversational telephone speech task [12] being the
most studied ASR benchmark today [2, 3, 19, 21, 25–27]. We
used Switchboard-1 Release 2 (LDC97S62) as the training set.
Results are reported on the Hub5 2000 (LDC2002S09) evalu-
ation set containing 20 ten-minute conversations from Switch-
board (SW) and 20 ten-minute conversations from CallHome
English (CH). It should be noted that the SW part is quite sim-
ilar to the training data, while the CH part differs significantly
and is much harder to recognize due to this.

The second corpus used for the experiments in this paper is
TED-LIUM [13]. We used the last (second) release of this cor-
pus [28]. This publicly available data set contains 1495 TED
talks that amount to 207 hours of speech data from 1242 speak-
ers recorded in 16kHz. The training, development and two test
sets were chosen in the same way as described in [29]

We also present results on the AMI meeting corpus [14] for
individual headset microphone (IHM) and single distant micro-
phone (SDM) tasks.
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Table 1: Comparison of mixup schemes for CE BLSTMP model
on the Switchboard task

Scheme Details WER
SW CH ALL

baseline — 10.2 20.1 15.2

local range of 3 frames 10.1 20.0 15.1
class max weight 0.1 10.4 20.8 15.7
shift 1-3 frames 10.0 19.9 15.0
global — 9.8 18.8 14.3

Table 2: Comparison of mixup schemes for LF-MMI TDNN-
LSTMP model trained without dropout on the Switchboard task

Scheme Threshold Epochs WER
SW CH ALL

baseline — 2 9.6 20.1 14.9

no scaling 0.001 2 8.9 17.7 13.4
default 0.001 2 9.3 18.0 13.7
balanced 0.001 2 9.4 17.5 13.5
no scaling 0.1 2 9.0 17.6 13.4
no scaling 0.2 2 9.0 17.6 13.4

4.2. Training details

We performed all experiments using the Kaldi ASR
Toolkit1 [30]. Baseline recipes are swbd/s5c for the
Switchboard task and ami/s5b for the AMI IHM/SDM
tasks. Acoustic models considered are Bidirectional LSTM
with projections (BLSTMP) [16] for cross-entropy train-
ing (only on the Switchboard task) and a mixture of Time
Delay Neural Network and unidirectional LSTM with pro-
jections (TDNN-LSTMP) [31] for LF-MMI training. All
these models are trained in the nnet3 Kaldi setup using
40-dimensional Mel-frequency cepstral coefficients (MFCC)
without cepstral truncation. Configurations of neural net-
works are exactly the same as described in [22] (see also
local/chain/tuning/run tdnn lstm 1l.sh in the Kaldi recipes).

The following techniques are also applied: speaker
adaptation using i-vectors [32], speed perturbation for 3-
fold data augmentation [5], dropout regularization [7] (for
some TDNN-LSTMP models). For the latter, the schedule
‘0,0@0.2,p@0.5,0’ described in [22] was used. We varied only
the peak dropout probability p in the experiments.

In contrast to the Kaldi recipes, for most of experiments
we reduced maximum number of GPUs from default values of
12–16 to 4 due to hardware limitations. This led to minor per-
formance degradation for LF-MMI models, which can be partly
compensated by reducing number of epochs. Nevertheless, we
also trained final LF-MMI models for the Switchboard task in
16-GPU setup in order to compare with the results of the base-
line Kaldi recipe (see also [22]).

For TED-LIUM experiments, there are several differences
from the Kaldi recipe tedlium/s5 r2. First, datasets are not the
same as in the recipe (see Subsection 4.1 for details). Second,
we did not use neither i-vectors, nor speed perturbation in these
experiments.

1Version 5.3.78∼1-d883e

Table 3: Comparison of mixup schemes for LF-MMI TDNN-
LSTMP model trained without dropout on the TED-LIUM task

Scheme Threshold Epochs WER
dev test1 test2

baseline — 4 11.5 8.6 11.1

no scaling 0.001 6 10.7 7.8 10.1
default 0.001 6 10.7 7.9 10.1
balanced 0.001 6 10.4 7.6 10.2

4.3. Mixup details

In this paper we experimented with mixup on the level of train-
ing examples only. We are going to investigate the gradient
mixup approach for LF-MMI in the future work.

Mixup examples construction schemes described in Sec-
tion 3 are implemented in our Kaldi-compatible tools2 which
are used instead of nnet3-copy-egs in CE training and nnet3-
chain-copy-egs in LF-MMI training. Training examples stored
in the archive are processed sequentially with a randomly sam-
pled mixture weight and chosen mixup scheme. If the mixup
scheme requires the second sequence, it is chosen randomly
from the same archive.

The original work [4] uses symmetric Beta distribution for
sampling of mixture weights. However, in this case some se-
quences in the training data will be dominated by the other
sequences. In order to prevent this situation, the weight for a
sequentially taken example is forced to be in [0.5, 1.0] range.
Our preliminary experiments shown that this restriction leads
to better performance. We also found that the Beta distribu-
tion parameter equal to 1 (which means uniform distribution) is
close to optimal value. So, uniform distribution with the afore-
mentioned restriction was used. In all experiments, mixup was
omitted for 10% of training examples chosen randomly.

5. Experiments
This section presents our experiments on applying mixup for
acoustic model training. Results on AMI are obtained with 3-
gram language models. Results on Switchboard are reported
after rescoring of word lattices with a 4-gram language model.
For TED-LIUM, a 4-gram language model is used.

5.1. Experiments with mixup schemes

The first set of experiments was aimed at empirical evaluation
of mixup training schemes described in Section 3.

Table 1 presents results for CE training on the Switchboard
task (all models have been trained with 8 epochs). It can be
seen that only the global scheme improves WER significantly,
while local and shift schemes almost do not affect model per-
formance. The class scheme harms significantly, probably due
to corruption of the original sequence with independent frames
belonging to different speakers. A way to improve this scheme
is using equally labeled chunks instead of individual frames.

Tables 2 and 3 show results for LF-MMI training on the
Switchboard and TED-LIUM tasks respectively. We notice that
the results are close for all considered mixup schemes: no scal-
ing one is slightly better on Switchboard, whereas balanced one
performs better on TED-LIUM. Numerator mixing threshold
also does not consistently affect the performance. Thus, in the

2The source code is available at https://github.com/speechpro/mixup
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Table 4: Comparison of mixup and speed perturbation (SP) for
CE BLSTMP model on the Switchboard task

Mixup SP Epochs WER
SW CH ALL

− − 5 11.2 21.4 16.4
− + 8 10.2 20.1 15.2
+ − 16 10.4 20.0 15.2
+ + 8 9.8 18.8 14.3
+ + 12 9.7 18.4 14.1
+ + 16 9.4 18.1 13.8

Table 5: Comparison of mixup and speed perturbation (SP) for
LF-MMI TDNN-LSTMP model on the Switchboard task

Mixup SP Epochs WER
SW CH ALL

− − 2 10.0 20.9 15.5
− + 2 9.6 20.1 14.9
+ − 5 9.6 18.6 14.0
+ + 2 9.0 17.6 13.4
+ + 3 9.0 17.4 13.3

further experiments we used the simplest mixup scheme with
no scaling and default threshold value of 0.001.

5.2. Comparing mixup and speed perturbation

The second set of experiments compares mixup with popu-
lar speed perturbation data augmentation technique [5] on the
Switchboard task. Optimal number of epochs was tuned for
each model. The results are given in Table 4 and Table 5 for CE
BLSTMP and LF-MMI TDNN-LSTMP models respectively. It
can be seen that mixup performs as well as speed perturbation
for the CE model, while outperforming it significantly for the
LF-MMI model. Moreover, these techniques are highly com-
plementary.

5.3. Comparing mixup and dropout

The next experiment compares mixup with dropout regulariza-
tion technique [7] for TDNN-LSTMP LF-MMI model on the
Switchboard task. As already mentioned in Subsection 4.2, we
used dropout schedule described in [22] and varied only the
peak dropout probability. As shown in Table 6, mixup out-
performs dropout. Combining mixup and dropout with default
peak probability leads to performance degradation. However,
dropout with small probability provides some improvement in
combination with mixup.

5.4. Other experiments

Table 7 shows the results of mixup training for LF-MMI
TDNN-LSTMP model on the AMI IHM/SDM tasks. Signifi-
cant WER reduction is observed in both of these tasks as well.

Finally, the last experiment was conducted in order to make
an exact comparison with actual Kaldi LF-MMI baseline re-
sults [22] obtained using 16 GPUs. Table 8 shows the results
of the comparison. As can be seen, mixup does not help on
the Switchboard subset. However, it reduces WER on the Call-
Home data significantly, which means improved robustness to a
mismatch between training and test conditions.

Table 6: Comparison of mixup and dropout for LF-MMI TDNN-
LSTMP model on the Switchboard task

Mixup Dropout Epochs WER
prob. SW CH ALL

− 0.0 2 9.6 20.1 14.9
− 0.3 2 9.0 18.6 13.9
+ 0.0 2 8.9 17.7 13.4
+ 0.3 2 9.1 18.0 13.7
+ 0.1 2 9.0 17.6 13.4
+ 0.05 2 9.0 17.2 13.2
+ 0.05 3 8.8 17.4 13.2

Table 7: Results of mixup-trained LF-MMI TDNN-LSTMP
model on the AMI IHM/SDM tasks

Model Dropout Epochs WER
prob. dev eval

IHM baseline 0.3 3 20.3 20.1
mixup IHM 0.05 3 19.4 18.8

SDM baseline 0.3 3 36.1 40.2
mixup SDM 0.05 3 34.8 38.4

6. Conclusions and Future Work
In this paper we applied mixup technique to ASR acoustic
model training and found it to be highly effective for cross-
entropy as well as LF-MMI scenarios. Relative WER reduc-
tion up to 13% was obtained on various ASR tasks. The main
advantages of mixup are:

• Significant performance improvement in mismatched
test conditions.

• Low implementation cost.

• Minimal impact on training time.

Mixup performs as well or better than speed perturbation data
augmentation technique, and outperforms dropout regulariza-
tion technique. Furthermore, these techniques are found to be
complementary.

Our future work will focus on further studying of simple
mixup schemes as well as implementing and exploring the pro-
posed gradient mixup training scheme for LF-MMI. It is also
interesting to investigate various mixture weights distributions
and scheduling variants. Finally, we are going to employ mixup
training for neural network based language models for ASR.
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Table 8: Results of final mixup-trained LF-MMI model (16-
GPU setup) on the Switchboard task

Model Dropout Epochs WER
prob. SW CH ALL

Kaldi baseline 0.3 4 8.8 18.1 13.5
mixup 0.05 4 8.8 16.7 12.8
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