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Abstract

Automated recognition of an infant’s cry from audio can be
considered as a preliminary step for the applications like re-
mote baby monitoring. In this paper, we implemented a re-
cently introduced deep learning topology called capsule net-
work (CapsNet) for the cry recognition problem. A capsule
in the CapsNet, which is defined as a new representation, is
a group of neurons whose activity vector represents the prob-
ability that the entity exists. Active capsules at one level
make predictions, via transformation matrices, for the parame-
ters of higher-level capsules. When multiple predictions agree,
a higher level capsule becomes active. We employed spec-
trogram representations from the short segments of an audio
signal as an input of the CapsNet. For experimental eval-
uations, we apply the proposed method on INTERSPEECH
2018 computational paralinguistics challenge (ComParE), cry-
ing sub-challenge, which is a three-class classification task us-
ing an annotated database (CRIED). Provided audio samples
contains recordings from 20 healthy infants and categorized into
the three classes namely neutral, fussing and crying. We show
that the multi-layer CapsNet is competitive with the baseline
performance on the CRIED corpus and is considerably better
than a conventional convolutional net.

Index Terms: ComParE, computational paralinguistic, baby
cry detection, capsule network, emotion recognition

1. Introduction

The automatic audio classification has gained an important at-
tention in recent years after the availability of big datasets. Typ-
ical applications range from the understanding of a scene or
context surrounding [1], the recognition of urban sound envi-
ronments [2] and the audio stream segmentation [3].

Detection or classification of the sound signals from acous-
tic sensors is a challenging problem because the boundaries be-
tween different classes could be fuzzy in nature. This implies
the need for developing reliable and robust algorithms for clas-
sification of acoustic events. Such solutions can be regarded
as the first step for an automatic recognition or labeling of the
audio content.

A large collection of the signal processing and machine
learning approaches have been applied to the problem, includ-
ing matrix factorization [4], unsupervised feature learning [5],
wavelet filterbanks [6] and deep neural networks as well [7].

Specifically, convolutional neural networks (CNN) are
mainly preferred routine for this particular audio classification
problem owing to the following reasons. Firstly, they can ef-
fectively capture the energy transition patterns when used with
spectrogram-like inputs [8]. Secondly, their convolutional fil-
ters arranged with a small receptive field are capable of learning
and discriminating spectro-temporal patterns of different audio
classes even if the sound is convolved by other sources (noise).

132

Conventional audio features such as mel-frequency cepstral co-
efficients (MFCC) or line spectral frequencies (LSF) are no-
ticeably unsuccessful with respect to these two reasons defined
above [9].

In this context, INTERSPEECH 2018 ComParE challenge
introduces a novel problem, which is to classify the three mood-
related infant vocalizations. This is an interesting research
which allows automatic monitoring of babies not only for re-
search purposes but also for clinical or home applications [10].
The corpus provided for this challenge comprises 5587 vo-
calizations of 20 healthy infants (10 females and 10 males)
recorded within a study for the early detection of neurodevel-
opmental disorders [11].

The training samples are categorised into the three classes:
(1) neutral/positive mood, (ii) fussing, and (iii) crying where the
categorization process is performed by two experts in the field
of early speech-language development with visual inspection on
the basis of audio-video clips.

A baby cry can be considered as rhythmic transitions be-
tween aspiration and expiration after periodic air pulses com-
ing from the vocal cord vibration. The period of these pulses
is typically varied in healthy babies between 250-600 Hz [12].
This cry signal is shaped by the vocal tract whose first two for-
mants occur ordinarily around 1100 Hz and 3300 Hz respec-
tively [13]. In fact, the vocal tract of a new-born child is shorter
(68 cm) and has a different structure compared with an adult.
Therefore, it has higher fundamental frequency and resonances
than adults. More details about the baby speech production, as
well as speech models and properties, can be found in Fort et al.
[14].

In the literature, detection of cry signals is commonly fol-
lowed through extraction of features from recorded audio seg-
ments. These include pitch and formants or other spectral fea-
tures such as short-time energy, MFCCs and others [15]. In the
second stage, the signal is mainly classified using the traditional
algorithms such as nearest neighbor or support vector machines
(SVM) [16].

Deep neural networks, which have a high model capacity,
are particularly dependent on the availability of large quanti-
ties of training data in order to learn a non-linear function from
input to output that generalizes well and yields high classifica-
tion accuracy on unseen data [17]. Hence, recent studies have
explored the use of the CNNss tailored to baby cry detection.

In [18], the authors propose two learning algorithms for bi-
nary detection of baby cry in audio recordings (cry or no-cry).
The first algorithm is a low-complexity logistic regression clas-
sifier, used as a reference. The second algorithm uses CNN,
operating on log Mel-filter bank representation of the record-
ings. Performance evaluation of the algorithms is carried out
using an annotated database containing several tens of hours
recordings and their best configuration yielded 82.5% accuracy
for the CNN classifier. In another study, similar network design
is adapted to classify the crying into three categories including
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hungry, pain, and sleepy [19]. Their network achieves 78.5%
validation accuracy collected from a balanced dataset.

The organizers of the challenge provide four baseline sys-
tems mainly composed of a set of features and a commonly
used SVM classifier except for one system. All of their compo-
nents can be reproduced via freely available, open source tools'.
Their lowest performance system applies brute-forced segmen-
tal acoustic features extracted using the openSMILE tool [20]
which achieves 57.5% unweighted average recall for test sam-
ples. Indeed, the tool gives a general purpose feature set that sat-
isfies a wide range of paralinguistic problems. However, there
is also a need for alternative representations achieving state-of-
the-art results on many paralinguistic tasks.

CNNs have become the dominant approach to object recog-
nition problem. They use translated replicas of learned feature
detectors which allows them to translate knowledge about good
weights acquired at one position in an image to other positions
[21]. On the other hand, small groups of neurons called “cap-
sules” make a very strong representational assumption: at each
location in the image, there is at most one instance of the type
of entity that a capsule represents [22]. Motivated this new ap-
proach, we apply an interesting alternative called capsule net-
work (CapsNet) [23] to recognize baby cry spectrogram inputs.
This network topology replaces the scalar-output feature detec-
tors of CNNs with vector-output capsules and max-pooling with
routing-by-agreement. As with CNNs, higher-level capsules
in CapsNet cover larger regions of the image, but unlike max-
pooling, it does not throw away information about the precise
position of the entity within the region.

For the ComParE Crying Sub-Challenge, we paid particu-
lar attention to improve the classification performance accord-
ing to the presented baselines under limited and unbalanced vo-
calizations. We implemented the capsule architecture which is
designed to have both activation and pose components. In par-
ticular, we investigated a deep CapsNet architecture with local-
ized (small) kernels for baby cry sound classification. This new
structure is beneficial for the restricted number of samples be-
cause it nicely preserves the variations in the detected entity.

Rest of the paper is structured as follows. Section 2 gives
a brief summary of the employed structure, then Section 3
presents the detailed methodology including pre-processing,
feature extraction and network architecture. Experimental eval-
uations are then given in Section 4.

2. Capsule Networks

The concept of capsules was first introduced by Hinton et al.
[22] as a method for learning robust unsupervised representa-
tion of images. Capsules are locally invariant groups of neurons
that learn to recognize the presence of visual entities and encode
their properties into vector outputs, with the vector length (lim-
ited to being between zero and one) representing the presence
of the entity. For example, each capsule can learn to identify
certain objects or object-parts in images. Within the framework
of neural networks, several capsules can be grouped together to
form a capsule-layer where each unit produces a vector output
instead of a conventional scalar activation.

The output vector length of a capsule represents the prob-
ability that the entity represented by the capsule is present in
the current input. Sabour et al. [23] use a non-linear function
called ”squashing” to ensure that short vectors get shrunk to al-
most zero length and long vectors get shrunk to a length slightly
below 1,
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where v; is the vector output of capsule j. In other words, the
capsule j performs the non-linear squashing activation for the
given input vector s; and output vector v;. The orientation of
vector s; is preserved, but the length is squashed between 0 and
1. The parameters in v; represent the various properties (like
position, scale or texture) of a particular entity, and the length
are used to represent the existence of the entity.

The input vector s; is a weighted sum over all prediction
vectors 1i;); that is produced by multiplying the output u; of a
capsule in the layer below by a weight matrix W j;,
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where the ¢;; are ”coupling coefficients” that are determined by
the iterative dynamic routing process.

The coupling coefficients between capsule ¢ and all the cap-
sules in the layer above sum to 1 and are determined by a "rout-
ing softmax” whose initial logits b;; are the log prior probabili-
ties that capsule ¢ should be coupled to capsule j.
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The initial coupling coefficients are then iteratively refined by
measuring the agreement between the current output v; of each
capsule j, in the layer above and the prediction #i;); made by
capsule 7 using the scalar product (cosine similarity) v; - ;).
In convolutional capsule layers each unit in a capsule is a con-
volutional unit. Therefore, each capsule will output a grid of
vectors rather than a single vector output (see the original paper
for the details of routing by agreement algorithm).

The coupling coefficients inherently decide how informa-
tion flows between pairs of capsules. For a classification task
involving K classes, the final layer of the CapsNet can be de-
signed to have K capsules, each representing one class. Since
the length of a vector output represents the presence of a visual
entity, the length of each capsule in the final layer can then be
viewed as the probability of the image belonging to a particular
class k.

bij = bij + 5 v5
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3. Methodology

In this study, we target to detect cry event classes from audio
recordings. We utilize the CapsNet structure to learn time-
frequency features of cry sounds. Our event detection system
is based on a three-class classification model which is defined
as a classification problem of events neutral/positive, fussing,
and crying over a temporal window. The ground truth event la-
bel is taken as a single label for each audio sample. In other
words, our event detection system will determine only one la-
bel for a given input test data regardless of their duration. We
first pre-process the audio samples to enhance quality and to
remove redundancy of the data that will be fed into network.
We then apply feature extraction procedure based on the time-
frequency analysis. Finally, we train the CapsNet architecture
on the extracted feature representations. The overview of our
methodology is illustrated in Figurel.

3.1. Pre-processing

In Section 1, we emphasized that the frequency content of an in-
fant’s cry is higher than an adult’s. The whole content of CRIED
corpus includes not only the cry vocalizations but also human
speech or environmental noises recorded during data collection
sessions. Although the duration of other sound types is much
more smaller compared to the cry samples, it is required to clean
the data to achieve more accurate performance. Thus, we first
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Figure 1: Block diagram of the proposed classification scheme

apply a high-pass FIR filter to remove the speech sounds and
other low-frequency noise on the signal.

On the other hand, baby cry sounds don’t have a fully
continuous characteristics. Instead, impulse-like sequences
recorded with different size of duration. Therefore, it is required
to perform segmentation of all vocalizations before the feature
extraction step. We then apply a voice activity detection (VAD)
algorithm as a front-end processing of sound signals.

We implemented a very basic VAD algorithm which uses
short-time features of audio frames and a decision strategy for
determining sound/silence frames. The main idea is to vote on
the results obtained from two discriminating features namely
spectral flatness (SF) and short-term energy (STE). Energy is
the most common feature for the VAD problem, however using
only the STE is not enough for a robust detection. We therefore
use the SF in addition to the STE which is calculated using the
following equation,

SFdB =10 loglo(Gs/As) (4)

where are Gg and Ag are geometric and arithmetic means of
the audio spectrum respectively. For each incoming frame these
two features are computed and the particular frame is marked
as a cry sound, if both of the feature values fall over the pre-
defined threshold. We fix up the threshold parameters based on
the visual inspection of how the VAD performs discrimination
efficiently.

3.2. Feature Extraction

Spectrogram representation visualizes time-frequency energy
distribution on a two-dimensional graph. The signal energy
at a particular time and frequency is represented by the color-
map intensity in which higher amplitudes are represented by
brighter reddish colors. Spectrograms are extracted from the
input signal using the fast Fourier transform (FFT). In order
to represent the temporal resolution, the signal is broken up
into overlapping windows in the time-domain, and FFT trans-
formed magnitude of the frequency spectrum for each window
is calculated. This process generally corresponds to the squared
log-magnitude calculation of the short-time Fourier transform

(STFT) of the signal. Each cry signal is converted from wave-
form into spectrogram using Librosa library [24] with 256 FFT
size. Within each temporal window, the spectrograms are com-
puted over 15 msec frames (equal to 240 samples for 16 kHz
sampling rate) with 50% overlap.

3.3. Network Architecture

Spectral capsule networks consist of spatial coincidence filters
that detect entities based on the alignment of extracted features
on a linear subspace. For this challenge, the proposed CapsNet
architecture is shown in Figure 2. It has three layers where
”ConvReLU” has 128, 9 x 9 convolutional kernels with a stride
of 2 and ReLU activation. This layer converts pixel intensities
to the activities of local feature detectors that are then used as
inputs to the “primary” capsules.

The primary capsules are the lowest level of multi-
dimensional entities and activating them corresponds to invert-
ing the rendering process. This is a special type of computation
than putting parts together to make familiar units, which is what
capsules are designed to be good at.

The second layer, "PrimaryCaps”, is a convolutional cap-
sule layer with 32 channels of convolutional 8D capsules (in
other words each primary capsule contains 8 convolutional units
with a 9 x 9 filter and a stride of 2). Each primary capsule
output sees the outputs of all 128 x 28 x 28 ConvReLU units
whose receptive fields overlap with the location of the center
of the capsule. In total, PrimaryCaps has [32, 10, 10] capsule
outputs (each output is an 8D vector) and each capsule in the
[6,6] grid is sharing their weights with each other. Further-
more, PrimaryCaps can be regarded as a convolutional layer
with Eq. (1). The final Layer, "CryCaps”, has one 16D cap-
sule per event class and each of these capsules receives input
from all the capsules in the layer below. The length of the ac-
tivity vector of each capsule in CryCaps layer indicates pres-
ence of an instance of each class and is used to calculate the
classification loss. Wj; is a weight matrix between each uj,
i € (1,32 x 10 x 10) in PrimaryCaps and v;, j € (1,3). The
last CryCaps layer is connected with dropout to a 3 class soft-
max layer with cross entropy loss.

4. Results
4.1. Dataset

The provided corpus, CRIED, comprises 5587 audio recordings
with alternating durations from 0.4 up to 41 seconds. Although
all vocalizations were extracted from sequences of up to 5 min-
utes in duration, vegetative sounds such as breathing, smacking,
hiccups, etc., were not segmented and included in the dataset.
The summary of the corpus is given in the following table.
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Figure 2: Proposed CapsNet architecture with three layers
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Table 1: Number of instances and durations per class

H ‘ Instance ‘ Dur. (sec) H
Neutral/Positive | 2292 3539
Fussing | 368 960
Crying | 178 812
Total | 2838 5311

4.2. Baseline Experiments

Similarly to previous years, official baseline system proposed
for this challenge employs the ComParE features set comprises
6373 features resulting from the computation of various func-
tionals over low-level descriptor (LLD) contours. The features
are computed with openSMILE toolbox [20]. The classifier
used is a SVM implemented in WEKA [25]. Another fea-
ture set is obtained through unsupervised representation learn-
ing with recurrent sequence to sequence autoencoders, using the
AUDEERP toolkit [26]. These feature vectors are concatenated
to obtain the final feature vector for SVM classifier. A differ-
ent baseline framework provides Bag-of-Audio-Words (BoAW)
features computed using OPENXBOW [27]. Again SVM is
used for classification of the BOAW descriptors. Last baseline
approach uses a CNN to extract features from the raw time rep-
resentation and then a subsequent recurrent network with Gated
Recurrent Units (GRUs) performs the final classification. For
this purposes the END2YOU toolkit was utilized [28].

4.3. Proposed System

We employed a stride of 1/128 sec to obtain square spectro-
gram images with 256 FFT sizes. Training is performed on
128 x 128 normalized spectrograms that have been downsam-
pled by scale 2 on each direction to achieve faster learning.
No other data deformation is used. We train our proposed sys-
tem with sequence mini batches of size 128. We also use the
Adam optimizer with a small learning rate of 0.001. The net-
work is trained for 50 epochs on a single NVidia GeForce Titan
XP GPU with 12 GB onboard memory implemented using Py-
Torch®. All hidden layers use RELU activation functions, the
output layer use softmax function, and the loss is calculated us-
ing cross-entropy function. Dropout and L2 regularization were
also used to prevent extreme weights.

In order to compare the CapsNet performances, we also em-
ployed a standard CNN as a benchmark evaluation. The CNN
is designed with three convolutional layers of 256, 256, 128
channels. Each has 5 x 5 kernels and stride of 1. The last con-
volutional layers is followed by two fully connected layers of
size 328, 192. The last fully connected layer is connected with
dropout to a 3-class softmax layer with cross entropy loss.

In the experimental evaluations, we utilized leave-one-
subject-out (LOSO) cross-validation to get the subject indepen-
dent evaluations. We use 64 x 64 spectrograms as an input for
the network, our event detection system uses majority rule for
instance based decision. As evaluation measure, unweighted
average recall (UAR) is used mainly since the beginning of the
first challenge held in 2009, because it is more adequate espe-
cially for unbalanced multi-class classifications than weighted
average recall (accuracy).

Although, we augmented the audio data using a stride to
the spectrograms, the neural network structure is very sensitive
to the training dimensions for each input type. In Table 1, it
can be observed that the duration of fussing or crying events
are around four times less than the neutral/positive samples.
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In other words, spectrograms of the fussing and crying classes
are formed by overlapping four times than the neutral/positive
class which compensates the number of training spectrograms
of each event.

Table 2: Performances of the LOSO experiments

UAR [%] Acc. [%]
Baseline: END2YOU - 70.8
Baseline: OPENSMILE 75.6 82.6
Baseline: OPENXBOW 76.9 84.2
Baseline: AUDEEP 74.4 83.5
CNN 66.3 75.1
CapsNet 68.6 77.9
+ VAD 69.2 80.4
+ Equalization 71.6 86.1

Table 2 presents the results obtained by all these config-
urations with baseline performances. Results show that the
CapsNet with LOSO protocol achieves 68.6% UAR and 77.9%
accuracy. In order to improve network performance, we apply
VAD and spectrogram equalization where both enhancements
yield 71.6% UAR and 86.1% accuracy respectively. How-
ever, the CNN does not add any perceivable progress over the
CapsNet systems which demonstrates the improvement of the
new topology clearly.

Table 3: Confusion matrix for the CapsNet LOSO experiment

Predicted
Neutral Fussing Crying
— | Neutral 93% 5% 2%
£ | Fussing  23% 59% 18%
<| Crying  11% 21%  62%

Event class based evaluations are given as confusion ma-
trices in Table 3 for CapsNet system. Although we observe
consistent predictions in all event classes for the LOSO exper-
iment, the most significant improvement appears in the neu-
tral/positive event class. Although we implemented an spec-
trogram equalization for the classes that have fewer instances
than neutral/positive, the unbalance problem still causes limited
performance for both fussing and crying classes.

5. Conclusion

For the ComParE Crying Sub-Challenge, we implemented the
capsule architecture, which is designed to have both activation
and pose components with localized (small) kernels for baby
cry sound classification. We applied pre-processing to filter out
low frequency content as well as eliminating non-vocalized seg-
ments with a VAD. Furthermore, spectrograms of the minority
classes were sampled more frequently to overcome the data un-
balance problem during the training. Although we still observe
effects of the data unbalance in our LOSO experiments, we got
competitive and promising results with the proposed CapsNet
system.
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