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Abstract
Recent developments in cryptography and, in particular in Fully
Homomorphic Encryption (FHE), have allowed for the develop-
ment of new privacy preserving machine learning schemes. In
this paper, we show how these schemes can be applied to the
automatic assessment of speech affected by medical conditions,
allowing for patient privacy in diagnosis and monitoring scenar-
ios. More specifically, we present results for the assessment of
the degree of Parkinsons Disease, the detection of a Cold, and
both the detection and assessment of the degree of Depression.
To this end, we use a neural network in which all operations are
performed in an FHE context. This implies replacing the activa-
tion functions by linear and second degree polynomials, as only
additions and multiplications are viable. Furthermore, to guar-
antee that the inputs of these activation functions fall within the
convergence interval of the approximation, a batch normaliza-
tion layer is introduced before each activation function. After
training the network with unencrypted data, the resulting model
is then employed in an encrypted version of the network, to pro-
duce encrypted predictions. Our tests show that the use of this
framework yields results with little to no performance degra-
dation, in comparison to the baselines produced for the same
datasets.
Index Terms: computational paralinguistics, cryptography

1. Introduction
Privacy is one of the most important issues regarding technol-
ogy nowadays. As the number and reach of Software as a Ser-
vice (SaaS) applications grows, so does the concern on user
privacy. Applications concerning speech and other biometric
signals have access to a great deal of information that a person
might not want revealed, not even to the entity they entrusted
their personal data with. This is specially true in Medicine,
where patient privacy is given the utmost importance. Se-
cure Machine Learning is a growing field of research that aims
to combine state-of-the-art machine learning algorithms with
secure computation frameworks, such as cryptography. This
way, data can be entrusted to a Machine Learning as a Service
(MLaaS) provider, ensuring its protection from both the service
provider and malicious third parties.

Privacy in speech processing is an interdisciplinary topic
of research, that also receives growing attention. Earlier work
by Pathak et al. [1] applied Secure Multi-Party Computation
to speaker verification, using Gaussian Mixture Models. A
promising line of work involved Secure Binary Embedding [2],
a scheme based in nearest-neighbor search, using secure ran-
domized vector embeddings, created through quantized random
projections. This scheme allows information to be leaked if
the corresponding SBE hashes of two vectors are close enough,
while preserving information-theoretic security. It has been ap-
plied to several speech processing tasks such as speaker verifi-
cation [3] and query-by-example speech search [4]. An exten-
sion of SBE, Secure Modular Hashing (SMH) [5], allows the

user to control the extension of the information leakage, thus en-
abling a trade-off between accuracy and security. This method
was first applied to a speech emotion recognition task in [6].

The most recent efforts on privacy preserving speech pro-
cessing have followed the progress in secure machine learning,
such as Cryptonets [7], described in the next section. In partic-
ular, an Encrypted Neural Network was applied to speech emo-
tion recognition by [6].

In this paper we provide a proof-of-concept on how these
privacy-preserving schemes can be used in medical applica-
tions concerning speech, for screening, monitoring and diag-
nosis purposes. More concretely, we apply Encrypted Neural
Network schemes, to the detection and assessment of Cold, De-
pression and Parkinson’s Disease. This selection was mainly
motivated by the availability of corpora distributed in paralin-
guistic challenges, and corresponding baseline results.

The paper is organized as follows: Section 2 reviews the
theoretical background necessary for this work. Our approach
is introduced in Section 3. Section 4 describes the datasets used,
and the experimental setup. Section 5 includes the results ob-
tained, together with a critical analysis. Section 6 presents our
main conclusions.

2. Background
2.1. Homomorphic Encryption

First proposed by Rivest et al. [8], Homomorphic Encryption
(HE) is a type of encryption that allows for certain operations
to be performed in the encrypted domain while preserving their
results in the plaintext domain. In other words, if for example
an addition or multiplication is performed on two encrypted val-
ues, the result of this operation is kept when the corresponding
encrypted value is decrypted.

Several Partially Homomorphic Encryption schemes allow
for either additions or multiplications, such as the Paillier [9]
and the El Gamal [10] cryptosystems, respectively, and al-
though they can be of use in some cases, the restriction to a
single mathematical operation makes them unsuitable for most
applications. Fully Homomorphic Encryption (FHE) was de-
signed to solve this limitation, when in 2009, Craig Gentry pro-
posed a scheme in which both additions and multiplications
were allowed and an arbitrary number of operations could be
performed [11]. This scheme was however computationally un-
feasible and Leveled Homomorphic Encryption (LHE) schemes
rose as an alternative. LHE schemes take advantage of the fact
that, in most applications, the user knows beforehand the num-
ber of arithmetic operations to be performed on encrypted val-
ues. Thus, as long as the number of operations does not exceed
a previously set threshold, the scheme is both computationally
feasible and provides correct results, however some limitations
remain. In HE, operations increase the amount of noise in the
encrypted values, and if a certain threshold is surpassed, it is
impossible to recover their original value. LHE allows us to
choose larger parameters that increase this noise threshold, but
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as these parameters increase, so does the computational com-
plexity of the operations. Consequently there needs to be a
trade-off between the number of operations to be computed in
the encrypted domain, and the computational complexity of the
application.

In this work we used SEAL’s implementation of the Fan
and Vercauteren(FV) scheme [12]. Specific details regarding
this implementation, including a detailed security review of the
scheme, can be found in its manual [13].

2.2. Encrypted Neural Networks

Neural networks have been shown to be especially suited for
secure machine learning applications using FHE [7][14][15], as
most operations can be replaced by additions and multiplica-
tions.

To comply with the restrictions FHE poses, some modifi-
cations are necessary. As stated in the previous section, a large
number of operations translates into a high computational cost,
therefore the number of hidden layers of the network needs to be
reasonably small, to limit the amount of operations computed in
the encrypted domain. Moreover, as HE only allows additions
and multiplications to be computed, only polynomial functions
can be computed, and thus activation functions have to be re-
placed by polynomials.

Considering multiplication has the highest toll on the noise
budget (i.e. the amount of noise allowed before the noise thresh-
old is reached), it is especially important to keep the number of
multiplications to a minimum, which means that the degree of
the polynomials replacing the activation functions needs to be
as small as possible.

In view of the reasons stated above, it is necessary to find
a suitable polynomial to replace the activation functions com-
monly present in neural networks. The REctified Linear Unit
(ReLU) activation function is a widely used activation, and thus
it has been the focus of most FHE neural network schemes,
although other activation functions have also been considered,
such as tanh and sigmoid.

The first approach to solve these constraints was proposed
in Cryptonets [7], where the authors train a Convolutional Neu-
ral Network, with x2 as a replacement for the ReLU activations.
It is worth noting that in this method, the network is first trained
with its original architecture, and the inference phase is done in
a simplified network, for performance reasons.

In the work of Chabanne et al. [14], the authors go fur-
ther than Cryptonets and approximate the ReLU function, using
Least Squares, with second, fourth and sixth degree polynomi-
als. These polynomials have a small interval of stability, as their
approximation is made around 0, which motivated the authors
to propose a key innovation, the introduction of a Batch Nor-
malization (BN) Layer before each Activation layer. The use
of the BN layer guarantees that the distribution of the inputs of
each activation is close to the standard normal and that most
inputs fall within the convergence interval of the approximation
[16]. To avoid the unbounded derivative of polynomials, the au-
thors train this network with regular ReLUs, which are replaced
by their corresponding polynomial approximations during the
prediction phase, although this problem only emerges in deep
networks.

Another advance was made in CryptoDL [15], mainly con-
cerning the polynomial approximations of the ReLU. This work
suggests the use of modified Chebyshev Polynomials to approx-
imate, not the ReLU directly, but its derivative, as the authors ar-
gue that the derivative of the activation is more important than
the shape of the function itself. Furthermore, since the deriva-

tive of the ReLU, the Step function, is non-differentiable at 0,
the Sigmoid function is used instead. This approach has the
advantage of approximating the function in a selected interval,
and not only around zero, which allows for wider convergence
intervals. The resulting polynomial is then integrated, and used
to train the network. Using this method, the authors were able
to obtain the best results of the three works mentioned above, in
the MNIST dataset [17].

In Dias et al. [6], the authors applied the scheme proposed
by Chabanne et al. [14], to a speech emotion recognition task,
using a small neural network.

In general, the training stage is still too computationally ex-
pensive to be performed in the encrypted domain. For this rea-
son, most frameworks are trained with unencrypted data.

3. Encrypted Network Architecture
Since our purpose is to make a proof-of-concept on how HE
might be used in medical applications, and considering the fact
that the datasets that were used for training are relatively small,
we used a shallow neural network, adapted with the methods
described in the previous section.

The network follows a similar structure to the one used by
Dias et al. [6]. It is composed by two Fully Connected (FC)
Layers, each followed by a Batch Normalization Layer and an
Activation Layer, these are followed by a final output FC layer.
For classification tasks, a Sigmoid Activation Layer is inserted
after the last FC layer. Following the approaches of Cryptonets
[7] and CryptoDL [15], we trained the network with the poly-
nomial approximations of the activation functions.

During training, a dropout layer was inserted before the sec-
ond and third FC layers. This serves as a regularizer, to help
prevent the network from overfitting [18]. The BN layer al-
ready present in the architecture, also has a regularization effect
[16], apart from assuring that the inputs of the activation layer
are normally distributed.

3.1. Polynomial Approximations

As previously stated, the activation functions in the network
need to be replaced by polynomials. We follow the approach
suggested by CryptoDL, and use Chebyshev Polynomials, to
approximate the ReLU through its derivative, or to be more pre-
cise, a function similar to its derivative, the Sigmoid.

We approximate this function, in the interval [−120, 120],
with a high degree Chebyshev polynomial, using Python’s
numpy package. The polynomial is then integrated, and it is
necessary to compute its constant term. We want the polyno-
mial to have a similar behaviour in the convergence interval as
the ReLU function, this means that we not only want to have
the smallest error between the real function and its approxima-
tion, but also want the approximation to have a value as close
to zero as possible when x < 0. This can be achieved by min-
imizing the MSE error between the original function, and the
polynomial, with a regularizer that penalizes negative values in
the interval, as the one shown in Equation 1,

R =
∑

n

max(−p(n) + c, 0)2 (1)

where p(n) is the polynomial, and c is the constant to be opti-
mized.

Using Python’s scipy.optimize, with 10000 data points in
the interval [−50, 50], we were able to obtain the complete
polynomial in Equation 2.
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p(x) = 0.03664x2 + 0.5x+ 1.7056 (2)

The approximation is limited to a second degree polynomial, to
abide by the constraints stated in the previous sections.

For classification tasks, it is helpful to have a function con-
strained between 0 and 1 for the output. This is not possible
using low degree polynomials, but it is possible to build a lin-
ear polynomial that is bounded between the same values in a
given interval. To this end, we also approximated the Sigmoid
function in the interval [−10, 10], with a linear polynomial, ob-
taining:

p(x) = 0.004997x+ 0.5 (3)

4. Experimental Setup
In this section we briefly describe the datasets, features and
methods used in our experiments.
4.1. Data

4.1.1. Cold: URTIC

The Upper Respiratory Tract Infection Corpus (URTIC) [19]
was provided by the Institute of Safety Technology of the Uni-
versity of Wuppertal, Germany, for the Interspeech 2017 Com-
ParE Challenge [20]. It consists of 630 subjects, performing
both scripted and spontaneous speech tasks, recorded in quiet
rooms. The 630 recordings are divided in 28,652 segments,
varying between 3 and 10 seconds, amounting to a total of
45h. Both the Train and Development partitions include 210
subjects, of which 173 were healthy controls, and 37 were hav-
ing a cold. These partitions include 9,505 and 9,596 segments,
respectively. The labels included in this corpus indicate if the
subjects have a cold, or if they are healthy, hence this dataset is
used for a classification task.

4.1.2. Depression: DAIC-WOZ

The Distress Analysis Interview Corpus - Wizard of Oz (DAIC-
WOZ), is a subset of the DAIC database [21]. This database
is composed by clinical interviews designed to support the di-
agnosis of psychological distress conditions. The DAIC-WOZ
subset includes interviews conducted by a virtual interviewer, in
both video and audio formats, containing 189 sessions, of which
106 are included in the training partition, and 34 in the devel-
opment set. The training set includes 76 healthy controls and
30 subjects with depression. The development set has 12 sub-
jects with depression, and 22 controls. This corpus comes with
a set of labels classifying the interviewees in the PHQ-8 scale
[22], as well as whether they are Depressed or not, allowing for
both classification and regression tasks to be performed. The
dataset also includes segmentation files that allow us to split the
interviews into segments and to remove the interviewer’s inter-
ventions.

4.1.3. Parkinson’s Condition

In the assessment of Parkinson’s Condition, we use the database
provided for the ComParE Challenge of Interspeech 2015 [20].
This database is a subset of a Spanish corpus from Universidad
de Antioquia [23], that includes 50 patients, 25 male and 25
female, recorded in noise controlled conditions. These subjects
are classified in the UPDRS-III scale [24], ranging from 5 to
92. The recordings include 42 speech tasks, such as uttering
isolated words, sentences, reading a text, a monologue and the
rapid repetition of the syllables /pa-ta-ka/, /pa-ka-ta/ and /pe-
ta-ka/. Of the 50 patients, 35 are included in the training set

and the remaining 15 are included in the development set. This
dataset is used for a regression task.

4.2. Feature Extraction and Pre-processing

For both Cold and Depression tasks, the extended Minimalistic
Acoustic Parameter Set (eGeMAPS) [25] was used. This fea-
ture set was designed to serve as a baseline for paralinguistic
tasks. It is composed by 88 paralinguistic features, including
information on frequency, energy, spectral and cepstral charac-
teristics.

For the Parkinson’s Condition task, as eGeMAPS did not
obtain very significant results, a more specific feature set was
used. This set, developed by Pompili et al. [26], includes com-
mon features used in the assessment of Parkinson’s Disease.
It is based on GeMAPS [25], containing 36 GeMAPS based
features, alongside with 78 MFCC based features, resulting in
a 114-dimensional feature vector. Both feature sets were ex-
tracted from the audio files using openSMILE [27].

In every feature vector, the features were zero-centered and
scaled using the mean and standard deviation computed from
the training data of their respective datasets.

4.3. Neural Network Training

For our experiments, we implemented the model described in
Section 3 in Keras [28], with both polynomial and regular ac-
tivation functions. In these models, the first and second fully
connected layers have 120 and 50 hidden nodes, respectively,
while the output FC layer has only one, for both classification
and regression tasks.

All four models, classification for Cold and Depression, and
regression for Depression and Parkinson’s Disease, were trained
with a learning rate of 0.02, 100 epochs and a weight decay of
0.005, using RMSProp, an adaptive learning rate backpropa-
gation algorithm implemented in Keras. As loss functions we
used Binary Cross Entropy (BCE) for classification and Mean
Squared Error (MSE) for regression.

As was previously stated a dropout layer was included be-
fore the second and third FC layers, to prevent overfitting dur-
ing training. The values of the probability of dropout used were
found through random search: 0.3746 and 0.5838 for the Cold;
0.092 and 0.209 for Depression; 0.877 and 0.246 for Parkin-
son’s Condition.

When training for classification, it was noted that the Cold
and Depression training partitions had a large misrepresentation
of the subjects that presented the respective condition. To bal-
ance this, weights were attributed to each class. For Depression
a weight of 0.8 was attributed to positive samples, and 0.2 was
given to negative samples. In Cold, the difference was larger,
thus we gave weights of 0.9 and 0.1 to the positive and negative
samples, respectively.

4.4. Encryption Parameters
To make predictions in an encrypted setting, the parameters of
the models trained with Keras were applied to an implemen-
tation of the same network using encrypted operations, imple-
mented in C++ with SEAL [13]. This library also requires a
set of encryption parameters to be selected. These are related
with the security of the encryption and the number of opera-
tions allowed on the encrypted domain. We selected a polyno-
mial modulus of 4,096 and a plaintext modulus of 230.

5. Results
In this section we provide the results obtained in our tests. For
each dataset we present the values corresponding to two neu-
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Table 1: The baseline and the results obtained for Cold classi-
fication.

Method UAR(%) F1 Score Precision Recall

Baseline 66.1 - - -
NN 66.9 .279 (.687) .169 (.959) .803 (.535)

ENN 66.7 .278 (.687) .168 (.958) .799 (.535)

ral networks: an unencrypted neural network (NN) trained with
normal activation functions, and an Encrypted Neural Network
(ENN), trained with polynomial approximations and perform-
ing encrypted predictions. All results presented correspond to
the Development partition of the datasets, at the segment level.
When referring to the F1 scores, Precision and Recall, the value
in brackets always corresponds to the negative (0) class, while
the value outside the brackets corresponds to the positive (1)
class. In the Depression task, a positive sample means that the
subject is Depressed, and in the Cold task that the subject has a
cold.

5.1. Cold

In Table 1, it is possible to observe the results regarding the
Cold classification task and the baseline stated for the Inter-
speech 2017 ComParE Challenge [29]. In this challenge, UAR
was chosen to be the metric, but we also present the F1 scores,
together with the Precision and Recall for both classes, for a bet-
ter understanding of the performance of our models. Both the
model with the original activation functions and the encrypted
model performed above the baseline. In this case, there is a
very small performance degradation from the unencrypted NN
to the ENN. Most likely, this difference is not due to the ReLU
approximation, but because of the output Sigmoid, which, in
the NN case, is a bounded function, and in the ENN is a linear
polynomial.

5.2. Depression

Tables 2 and 3 show the results regarding classification and re-
gression for the Depression task. The metrics used correspond
to the ones presented in the AVEC 2016 Challenge [30]. In
this challenge, the metrics used for classification were the F1
score, Precision and Recall, for both classes. For regression,
the metrics were the RMSE and MAE. We also include UAR
as a metric, for coherence with the Cold task. In the case of
classification, when comparing the results of the NN and ENN,
there is just a slight performance degradation due to the poly-
nomial approximations. For the regression task, the ENN per-
forms better than the NN for both the Root Mean Square Error
(RMSE) and the Mean Average Error (MAE). The baseline re-
sults presented for the AVEC 2016 Challenge are reported at
the interview level, combining frame level results with major-
ity voting and a simple average. For fair comparison with the
other tasks, our results are reported at the segment level, instead
of the interview level. Nevertheless, the baseline provided for
the challenge yields a UAR of 69.9% for classification, and for
regression a RMSE of 6.74 and a MAE of 5.36. Using majority
voting, the ENN obtained a UAR close to that of the baseline,
achieving 67.9%. This discrepancy may be due to the fact that
AVEC’s baseline uses features from COVAREP [31], whereas
our experiment was conducted using eGeMAPS.

Table 2: The baseline and the results obtained for Depression
classification.

Method UAR(%) F1 Score Precision Recall

NN 60.6 .586 (.515) .454 (.782) .827 (.384)
ENN 60.2 .541 (.642) .480 (.713) .621 (.584)

Table 3: Baseline and results obtained for Depression severity.

Method RMSE MAE

NN 7.43 5.80
ENN 6.77 5.64

5.3. Parkinson’s Condition

The results for Parkinson’s Condition can be observed in Table
4. Here we chose to include, not only the metric proposed in In-
terspeech 2015 [20], Spearman’s Correlation Coefficient ρ, but
also the RMSE and MAE. The reason for this was to have the
same metrics present in both regression tasks. The NN performs
better than the baseline with regard to Spearman’s Coefficient,
but the ENN does not. Considering the RMSE and MAE, there
is not a relevant difference in the results of both models, how-
ever both are lower for the ENN.

Table 4: Baseline and results obtained for Parkinson’s Condi-
tion.

Method RMSE MAE ρ

Baseline - - 0.492
NN 16.6 12.6 0.507

ENN 16.0 12.5 0.450

6. Conclusions
This work contributes with a proof-of-concept on how paralin-
guistic health-related tasks can be made secure through the use
of Fully Homomorphic Encryption.

The same generic architecture was adopted for the three
tasks, without any customization effort, which results in almost
no gains over the baselines. Health-related tasks are still typi-
cally characterized by limited amounts of training data, which
in turn, limits the improvements potentially obtainable with
state-of-the-art machine learning techniques, using speech as
a single modality, without any speaker clustering. However,
the slight difference between the results obtained by encrypted
neural networks and their non-encrypted counterparts showed
the validity of our secure approach. Nevertheless, the limited
amount of data does not allow a thorough analysis of perfor-
mance degradation in deeper networks.

As future work, we plan to investigate other promising solu-
tions, such as using deeper neural networks, and adapting end-
to-end architectures to the restrictions of FHE. Secure training
is also an open problem, that if solved can contribute to the in-
crease in size of existing databases, allowing for better models
to be trained for real world applications.
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