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Abstract
We propose role play dialogue-aware language models (RPDA-
LMs) that can leverage interactive contexts in role play multi-
turn dialogues for estimating the generative probability of
words. Our motivation is to improve automatic speech recog-
nition (ASR) performance in role play dialogues such as con-
tact center dialogues and service center dialogues. Although
long short-term memory recurrent neural network based lan-
guage models (LSTM-RNN-LMs) can capture long-range con-
texts within an utterance, they cannot utilize sequential interac-
tive information between speakers in multi-turn dialogues. Our
idea is to explicitly leverage speakers’ roles of individual ut-
terances, which are often available in role play dialogues, for
neural language modeling. The RPDA-LMs are represented as
a generative model conditioned by a role sequence of a target
role play dialogue. We compose the RPDA-LMs by extending
hierarchical recurrent encoder-decoder modeling so as to han-
dle the role information. Our ASR evaluation in a contact cen-
ter dialogue demonstrates that RPDA-LMs outperform LSTM-
RNN-LMs and document-context LMs in terms of perplexity
and word error rate. In addition, we verify the effectiveness of
explicitly taking interactive contexts into consideration.
Index Terms: role play dialogue aware language models, hier-
archical recurrent encoder-decoder, automatic speech recogni-
tion, contact center dialogues

1. Introduction
In the automatic speech recognition (ASR) field, multi-party
conversation is one of the most popular ASR tasks. Multi-party
conversation tasks have different attributes from typical single
speaker tasks since multiple speakers interact with each other.
In order to enhance ASR performance in multi-party conversa-
tion tasks, language models (LMs) have to precisely capture the
interactive contexts.

A lot of studies have been reported for improving language
modeling in single speaker tasks. For a while, smoothed n-gram
LMs were employed in ASR because they yield powerful per-
formance in spite of simple modeling [1–4]. In recent studies,
neural LMs that capture words by converting continuous rep-
resentations have attracted a lot of attention [5, 6]. In partic-
ular, long short-term memory recurrent neural network based
LMs (LSTM-RNN-LMs) provide effective modeling to lever-
age long-range sequential contexts within an utterance [7–9].
In addition, to capture discourse-level sequential contexts, doc-
ument context LMs that can capture long-range sequential con-
texts beyond utterance boundaries have also been proposed
[10, 11].

On the other hand, language models intended to be used
in multi-party conversation have also been developed [12, 13].
In order to capture differences between speakers, speakers’ role
information is often utilized for language modeling [14, 15]. In

fact, the role information is easily obtained in role play dialogue
ASR tasks such as contact center dialogues or service center di-
alogues because individual speaker’s speech can be recorded on
pre-defined different sources. Most previous work utilized the
role information for reflecting role-specific word occurrences
into n-gram LMs [15].

However, the previous work did not take sequential inter-
active contexts between speakers into consideration. We can
expect that ASR performance can be improved by capturing the
sequential interactive contexts since they incrementally affect
the next speaker’s utterances. Therefore, our idea is to reconcile
role-dependent modeling with LSTM-RNN based long-range
sequential modeling. Although a similar idea is examined in
dialogue context LMs, they can only be applied for two-speaker
dialogues in which each speaker’s utterances are uttered alter-
nately [16]. In real ASR applications, more flexible LMs are
required because two speaker’s utterances rarely alternate.

In this paper, we propose role play dialogue aware LMs
(RPDA-LMs) that can leverage sequential interactive contexts
from start-of-conversation to a current word for estimating the
generative probability of a word in a current utterance. Unlike
the conventional dialogue context LMs, the RPDA-LMs can be
applied to arbitrary role play dialogue ASR tasks. We compose
the RPDA-LMs by extending a hierarchical recurrent encoder-
decoder so as to handle role information [17]. In addition to the
RPDA-LMs, this paper presents role-aware LSTM-RNN-LMs
that can only handle role information in the current utterance in
order to clarify the differences between the RPDA-LMs and the
LSTM-RNN-LMs.

The RPDA-LMs are closely related to neural conversation
models that are developed for a response generation module
in spoken dialogue systems [18–22]. The neural conversation
models are regarded as LMs conditioned on collocutor’s ut-
terances. Furthermore, dialogue context neural conversation
models have been examined for incorporating multi-turn dia-
logues [23–25]. The RPDA-LMs are regarded as the dialogue
context neural conversational models that are modified so as to
accommodate role play dialogue ASR tasks. To the best of our
knowledge, this paper is the first work on applying the neu-
ral conversation models to ASR. Additionally, the RPDA-LMs
are related to neural language models conditioned by auxiliary
features except for words. Topic information is usually intro-
duced for capturing global lexical context [26–28]. In addition,
speech information is used as the auxiliary features for incor-
porating a speaker’s attributes [29]. In the RPDA-LMs and the
role-aware LSTM-RNN-LMs, the auxiliary features are role in-
formation. Although neural networks that depend on role infor-
mation have been examined in spoken language understanding
fields [30, 31], this paper reports the initial study of role depen-
dent neural networks in language modeling.

Our evaluation uses Japanese contact center dialogue data
sets. We demonstrate the RPDA-LMs outperform the role-
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Figure 1: Model structure of RA-LSTM-RNN-LMs.

aware LSTM-RNN-LMs and document-context LMs in terms
of perplexity and word error rate. In addition, we verify the
effectiveness of explicitly taking sequential interactive contexts
into consideration.

2. Role Aware LSTM-RNN LMs
This section describes role aware LSTM-RNN LMs (RA-
LSTM-RNN-LMs) that can leverage role information for es-
timating a generative probability of words. The RA-LSTM-
RNN-LMs are composed by extending LSTM-RM-LMs that
can flexibly take into consideration long-range context based on
an LSTM-RNN. While the LSTM-RNN-LMs are expressed as
generative models, The RA-LSTM-RNN-LMs are expressed as
conditional generative models. In the RA-LSTM-RNN-LMs,
a role label of a target utterance is treated as given informa-
tion. This modeling assumes that all utterances are mutually
independent from each other. A generative probability of words
W = {w1, · · · , wN} given a role label r is formulated as:

P (W |r,Θ) =

N∏

n=1

P (wn|w1, · · · , wn−1, r,Θ)

=

N∏

n=1

P (wn|sn,Θ),

(1)

where Θ represents the model parameter and sn is a continuous
representation that embeds both {w1, · · · , wn−1} and r on the
basis of neural network based modeling.

Figure 1 shows the model structure of the RA-LSTM-RNN-
LMs. In the RA-LSTM-RNN-LMs, individual words and a role
label in an utterance are converted into a continuous representa-
tion. The continuous representations of wn−1 and r are defined
as:

wn−1 = EMBED(wn−1; θw), (2)

r = EMBED(r; θr), (3)

where EMBED() is a linear transformational function to embed
a symbol into a continuous vector and θw and θr are trainable
parameters.

While the LSTM-RNN-LMs capture only the word contin-
uous representation, the RA-LSTM-RNN-LMs handle both the
word continuous representation and the role continuous repre-
sentation. To this end, wn and r are merged as:

cn−1 = [wn−1
⊤, r⊤]⊤. (4)

The merged representation is converted into a hidden repre-
sentation that summarizes past context information using an
LSTM-RNN. The hidden representation for estimating the n-
th word is calculated as:

sn = LSTM(c1, · · · , cn−1, θs)

= LSTM(cn−1, sn−1, θs),
(5)

where LSTM() is a function of the unidirectional LSTM-RNN
layer, θh is the trainable parameter, s0 is a zero vector 0, and
w0 means an initial symbol. In an output layer, predicted prob-
abilities are produced by:

on = SOFTMAX(sn, θo), (6)

where SOFTMAX() is a transformational function with soft-
max activation, θo is the trainable parameter, and on means
P (wn|w1, · · · , wn−1, r,Θ). In this modeling, Θ corresponds
to {θw, θr, θs, θo}. The parameter can be optimized by:

Θ̂ = argmin
Θ

−
∑

(W,r)∈D
log P (W |r,Θ), (7)

where D denotes the training data set. The optimization is con-
ducted using backpropagation through time.

3. Role-Play Dialogue Aware LMs
This section describes role play dialogue aware LMs (RPDA-
LMs). The RPDA-LMs can take relationships between utter-
ances into consideration while the RA-LSTM-RNN-LMs can
consider only words within an utterance. The RPDA-LMs com-
pute the generative probability of words in the target utterances
using not only role labels in them but also words and role labels
in past utterances.

The RPDA-LMs are modeled by extending hierarchical re-
current encoder-decoder modeling so as to handle role informa-
tion. In this modeling, context information in past utterances is
encoded into a continuous representation in two stages. In the
first stage, utterance-level information, which includes a role la-
bel and words, is converted into a continuous representation. In
the second stage, continuous representations of all past utter-
ances are also converted into a continuous representation. The
generative probability of a word in a target utterance is esti-
mated by a continuous representation that embeds the contin-
uous representation of past utterances, a role label of a target
utterance and past words in the target utterance. The words in a
multi-turn dialogue is defined as W = {W 1, · · · , W T } where
W t = {wt

1, · · · , wt
Nt} represents the t-th utterance and N t

represents the number of words in the t-th utterance. The gen-
erative probability of W is defined as:

P (W |R,Θ)

=

T∏

t=1

P (W t|W 1, · · · , W t−1, r1, · · · , rt,Θ)

=

T∏

t=1

Nt∏

n=1

P (wt
n|wt

1, · · · , wt
n−1, r

t,

W 1, · · · , W t−1, r1, · · · , rt−1,Θ)

=

T∏

t=1

Nt∏

n=1

P (wt
n|wt

1, · · · , wt
n−1, r

t, u1, · · · , ut−1,Θ)

=

T∏

t=1

Nt∏

n=1

P (wt
n|wt

1, · · · , wt
n−1, r

t, ht,Θ)

=

T∏

t=1

Nt∏

n=1

P (wt
n|st

n,Θ),

(8)

where R = {r1, · · · , rT } is a role sequence in the multi-
turn dialogue which corresponds to W , Θ represents the

1260



Figure 2: Model structure of RPDA-LMs.

model parameter, ut−1 is a continuous representation that
embeds {w1, · · · , wn−1} and {r1, · · · , rn−1}, ht is a con-
tinuous representation that embeds {W 1, · · · , W t−1} and
{r1, · · · , rt−1}, and st

n−1 is a continuous representation that
embeds {wt

1, · · · , wt
n−1}, rt and all previous interactive con-

texts.
Figure 2 shows the model structure of the RPDA-LMs. The

RPDA-LMs are constructed from a word-level encoder net-
work, an utterance-level encoder network, and a decoder net-
work. In the RPDA-LMs, each word and each role is converted
into continuous representations followed by:

wt
n = EMBED(wt

n; θw), (9)

rt = EMBED(rt; θr), (10)

These continuous representations are used in both the word-
level encoder network and the decoder network.

In the word-level encoder network, all words in an utterance
is embedded into a continuous representation followed by:

zt−1
n = [wt−1

n
⊤

, rt−1⊤
]⊤, (11)

ut−1
n = LSTM(zt−1

1 , · · · , zt−1
n , θu)

= LSTM(zt−1
n , ut−1

n−1, θu),
(12)

where θu is the trainable parameter. The entire utterance infor-
mation can be embedded into ut−1

Nt−1 , which is expressed as:

ut−1 = ut−1
Nt−1 . (13)

In addition, in order to capture multi-turn dialogue context in-
formation, continuous representations of past utterances are em-
bedded into a continuous representation using the utterance-
level decoder network. A continuous representation that em-
beds a start-of-dialogue and the t − 1-th utterance is defined
as:

ht = LSTM(u1, · · · , ut−1, θh)

= LSTM(ut−1, ht−1, θh),
(14)

where θh is the trainable parameter. Note that u0 and h0 repre-
sent a zero vector 0. If ht−1 is set as a zero vector 0, only the
t − 1-th utterance is embeded into ht.

In the decoder network, which corresponds to a conditional
generative model, a word continuous representation, a role con-
tinuous representation, and a continuous representation of past
utterances are merged as:

ct
n−1 = [ht⊤

, wt
n−1

⊤
, rt⊤

]⊤. (15)

The merged representation is converted into a hidden represen-
tation that summarizes all past context using an LSTM-RNN.
The hidden representation for estimating the n-th word is cal-
culated as:

st
n = LSTM(ct

1, · · · , ct
n−1, θs)

= LSTM(ct
n−1, s

t
n−1, θs).

(16)

Note that st
0 represents a zero vector 0, and wt

0 denotes an initial
symbol. In an output layer of the decoder network, predicted
probabilities of wt

n are produced by:

ot
n = SOFTMAX(st

n, θo), (17)

where ot
n means P (wt

n|st
n,Θ) and Θ corresponds to {θw, θr ,

θu, θh, θs, θo}. While the RA-LSTM-RNN-LMs are trained
from utterances with role labels, the RPDA-LMs are trained
from multi-turn dialogues. The parameter can be optimized by:

Θ̂ = argmin
Θ

−
∑

(W ,R)∈D
log P (W |R,Θ), (18)

where D denotes the training data set that includes multiple
multi-turn dialogues with role labels. The optimization is also
followed by backpropagation through time.

4. Experiments
4.1. Setups

We used the contact center dialogue data sets, which include
several topics. One dialogue means one telephone call between
one operator and one customer. Each dialogue was separately
recorded and the data set consists of 2,636 dialogues. One dia-
logue included about 121 utterances, and one utterance included
about 10 words in average. We divided the data set into a train-
ing set, a validation set, and a test set. Vocabulary size of the
training set was 25K words. Table 1 shows details.
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Table 2: PPL and WER (%) results.
Role Past Valid Test

Models labels utterances PPL WER PPL WER
(1). HPY-LM - - - 26.97 23.58 25.54 23.37
(2). LSTM-RNN-LM - - - 27.24 23.53 26.08 23.12
(3). LSTM-RNN-LM + HPY-LM - - 22.55 22.03 21.60 21.87
(4). RA-LSTM-RNN-LM -

√
- 26.49 23.62 25.51 23.24

(5). RA-LSTM-RNN-LM + HPY-LM
√

- 22.05 22.00 21.19 21.85
(6). DC-LM (ht−1 = 0) - - - 25.67 23.04 24.66 22.71
(7). DC-LM (ht−1 = 0) + HPY-LM - - 21.43 21.85 20.58 21.79
(8). DC-LM - -

√
21.32 22.15 20.50 21.68

(9). DC-LM + HPY-LM -
√

18.92 21.17 18.14 21.09
(10). RPDA-LM (ht−1 = 0) -

√
- 25.22 22.85 24.11 22.62

(11). RPDA-LM (ht−1 = 0) + HPY-LM
√

- 21.34 21.79 20.41 21.74
(12). RPDA-LM -

√ √
19.40 21.92 18.63 21.44

(13). RPDA-LM + HPY-LM
√ √

17.56 21.10 16.83 20.95

Table 1: Experimental data set.
# of dialogues # of words

Train 2,545 3,318,235
Valid 45 48,511
Test 46 50,116

We used a senone based LSTM-RNN acoustic model.
Acoustic feature consisted of 40 dimensional log mel-filterbank
coefficients appended with delta and acceleration coefficients,
which frame shift was 10 ms. For the acoustic modeling, we
stacked two LSTM-RNN layers with 512 cells, two fully con-
nected layers which had 1,024 hidden units with rectified lin-
ear units, and a softmax layer with 3,072 outputs. The speech
recognizer is a weighted finite state transducer (WFST) based
decoder [32].

For evaluation, we constructed various LMs. “HPY-LM”
is 3-gram hierarchical Pitman-Yor LM which is the baseline n-
gram LM [2]. The HPY-LM was introduced in the speech rec-
ognizer by converting WFST. In addition, we constructed the
following four neural LMs. “LSTM-RNN-LM” is an LSTM-
RNN based LM and “RA-LSTM-RNN-LM” is the LM de-
scribed in Section 2. In RA-LSTM-RNN-LM, a word contin-
uous representation and a role continuous representation were
set to 650 and 32 dimensional vectors, and LSTM-RNN layer
had 650 units. LSTM-RNN-LM is composed by deleting role
labels in RA-LSTM-RNN-LM. These two LMs only used con-
texts within an utterance. “DC-LM” is a document context LM
that is modeled by hierarchical RNN encoder-decoder model-
ing, and “RPDA-LM” is the proposed method detailed in Sec-
tion 3. In RPDA-LM, a word continuous representation and a
role continuous representation were set to 650 and 32 dimen-
sional vectors, LSTM-RNN layer in a word-level encoder net-
work had 650 units, LSTM-RNN layer in a utterance-level en-
coder network had 200 units, and LSTM-RNN layer in a de-
coder network had 650 units. Note that the DC-LM is com-
posed by deleting role labels in the RPDA-LM. These two LMs
can capture relationships between utterances. For optimization
of each neural LM, we used mini-batch stochastic gradient de-
scent where a learning rate was scheduled using validation loss.
The dropout rate in each LSTM-RNN layer was set to 0.5. For
implementing neural LMs to ASR, 100-best rescoring was con-
ducted. When using DC-LM and RPDA-LM, we incrementally
rescored each utterance in order from the front because the LMs
depend on multi-turn dialogues. In addition, we examined lin-
ear interpolation of HPY-LM and each neural LMs in which the

interpolation weights were optimized using the validation set.

4.2. Results

Experimental results in terms of perplexity (PPL) and word er-
ror rate (WER) are shown in Table 2. In Table 2, “Role labels”
and “Past utterances” represents that either role labels were uti-
lized or not, and either past utterances were utilized or not in
each LM. Line (1) shows baseline results in which no neural
LMs were introduced. It is shown that PPL results in the contact
center dialogue tasks were comparatively smaller than those in
general ASR tasks because many backchannels are involved in
both speaker’s utterances. Results obtained with LSTM-RNN-
LMs are shown in lines (2) and (3), and those obtained with
RA-LSTM-RNN-LMs are shown in lines (4) and (5). They
show that (3) outperformed (1) and (2), and (5) outperformed
(3) and (4). This indicates that neural LMs can be comple-
mented with the n-gram LM. In addition, (4) was comparable
to (2). This indicates that role information was not so effective
for estimating the generative probability of words within an ut-
terance. Results obtained with the DC-LMs are shown in lines
(6) to (9), and those obtained with the RPDA-LMs are shown
in lines (10) to (13). Note that (6), (7), (10) and (11) show re-
sults where ht−1 in utterance-level encoder network was set to
a zero vector 0. They show that (12) outperformed (10) and (8)
outperformed (6). This indicates that it is important to consider
past long-range utterances for improving word estimation per-
formance. They also show that (12) was superior to (8). This
indicates that role information is effective for capturing sequen-
tial interactive contexts. The best performance was obtained by
(13), which achieved 2.42 point WER improvement compared
to (1) and 0.92 point WER improvement compared to (3) in the
test set.

5. Conclusions
In this paper, we described RPDA-LMs that can be used in role
play dialogue ASR tasks. The main advantage of the RPDA-
LM is that it leverages sequential interactive contexts in role
play multi-turn dialogues for estimating the generative proba-
bility of words. We formulated the RPDA-LM as conditional
hierarchical recurrent encoder-decoder modeling with multiple
LSTM-RNNs. Experiments in a contact center dialogue task
showed that the RPDA-LM could yield ASR performance im-
provements compared with RA-LSTM-RNN-LM and DC-LM.
In addition, we verified the effectiveness of explicitly capturing
both long-range sequential utterances and role labels.
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