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Abstract
We consider the task of speech source localization from a bin-
aural recording using interaural time difference (ITD). A typical
approach is to process binaural speech using gammatone filters
and calculate frame-level ITD in each subband. The ITDs in
each gammatone subband are statistically modelled using Gaus-
sian mixture models (GMMs) for every direction during train-
ing. Given a binaural test-speech, the source is localized us-
ing maximum likelihood (ML) criterion. In this work, we pro-
pose a subband weighting scheme where subband likelihoods
are weighted based on their reliability. We measure the reli-
ability of a subband using the average frame level localization
error obtained for the respective subbands. These reliability val-
ues are used as the weights for each subband likelihood prior
to combining the likelihoods for ML estimation. We also in-
troduce non-linear warping of these weights to accommodate
and analyse a larger space of possible subband weights. Ex-
periments on Subject 003 from the CIPIC database reveal that
weighting the subbands is better than the unweighted scheme of
combining likelihoods.
Index Terms: gammatone filters, interaural time difference,
warping function

1. Introduction
Machine localization of speech sources is essential for a
wide range of applications, including human-robot interaction,
surveillance and hearing aids. Robot sound localization algo-
rithms have been proposed using microphone arrays with var-
ied number of microphones [1–6]. However, humans have an
incredible ability to localize sounds with just two ears. The ma-
jor cues that help in localization are interaural time difference
(ITD) and interaural level difference (ILD). These cues can be
captured by the head-related transfer function (HRTF) [7]. Its
time domain equivalent is the head-related impulse response
(HRIR). Algorithms inspired by binaural localization of hu-
mans would extract these features from the input signals [8–22].
To account for the time and frequency variability of these cues,
time-frequency (TF) representations of the binaural signals are
used. One of the most common time-frequency representations
is the Short-Time Fourier Transform (STFT) [10,12,15,17,19].
Another approach is to use gammatone filters [23] where, un-
like STFT, the subband width and spacing are not uniform
[8, 11, 13, 14, 16, 22, 24]. The use of gammatone filters is in-
spired by the filter structure of the cochlea in human ears. In
this work, we use gammatone filters to preprocess the binaural
signals.

May et al. [13, 14] and Woodruff et al. [16] use Gaussian
mixture models (GMMs) to model ITD, ILD and their joint
distribution (ITLD) for each gammatone subband in each di-
rection. Then, for a test-speech, log-likelihood integration is

Authors thank Pratiksha Trust for their support.

performed across the TF plane and the direction with the maxi-
mum likelihood is picked as the direction of arrival (DoA). Ma
et al. [22] use DNNs to map the cross-correlation function, in-
stead of ITDs, of each TF bin to the posterior distribution (PD)
of DoAs. PDs across the TF plane are averaged similar to the
likelihood integration in GMM based methods and the direction
with the maximum posterior probability is chosen as the DoA.
In this work, we consider only ITD and extend the GMM based
method of May et al. [13] by investigating the localization ac-
curacy of each subband. DoA estimation can be treated as a
classification problem where, given a feature (ITD), the latent
class (DoA) needs to be inferred. For a subband, each direc-
tion will have its own distribution of ITD. Higher discrimina-
tion among distributions of different directions results in a bet-
ter classification accuracy. Hence, subbands with a high level
of discrimination are more reliable than the ones with a low
level of discrimination. Addition of noise could decrease this
discrimination and lead to a decrease in localization accuracy.
We hypothesize that weighting the subband likelihoods based
on their reliabilty can improve localization accuracy. Using lo-
calization error as a measure of discrimination, we find a mea-
sure of reliability for each of these subbands. These reliability
values are then used as the subband weights. To account for a
larger space of weights and possible changes in the reliability
of subbands with SNR, we propose to warp the weights using
a non-linear warping function. From the localization errors ob-
tained for all possible weights at each SNR, we select one set of
weights that performs best on all SNRs combined. Experiments
with Subject 003 from the CIPIC database [25] reveal that the
weighted subband localization scheme works better than the un-
weighted scheme. It also turns out that the best weights ob-
tained for each SNR performs marginally better than the SNR
independent weights under the simulated additive white gaus-
sian noise (AWGN) conditions.

2. Binaural Cue Extraction and
Localization

DoA estimation consists of the steps shown in figure 1. We
provide the details of these steps in the following subsections.

2.1. Gammatone Filters

The binaural signals are processed through N=32 fourth order
gammatone filters. Their center frequencies are equally dis-
tributed with respect to the equivalent rectangular bandwidth
(ERB) scale between 80Hz and 5kHz, starting with 80Hz and
ending with 4.6kHz. This range primarily covers the entire
speech spectrum. To approximate the neural transduction pro-
cess of the inner hair cells, the outputs of the gammatone filters
are halfwave rectified and square-root compressed [13]. The re-
sulting outputs of the left and right channels of the ith subband
are denoted by li and ri.
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Figure 1: Proposed subband weighting scheme to obtain the best weights for weighted Maximum Likelihood localization
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Figure 2: (a) ITD distributions of all directions in gammatone subbands with center frequencies 80 Hz, 518.8Hz, 2.35kHz & 4.56 kHz.
(b) Average frame-level localization errors of subbands (top) and their respective reliabilities (bottom) (c-g) Warping functions (top)
and their respective warped subband weights (bottom) for α = -0.9999, -0.6, 0, 0.6, 0.9999 and T=14.92. Choosing α = -0.9999 is
equivalent to weighing all subbands equally whereas α = 0.9999 is almost equivalent to choosing just one subband.

2.2. ITD Extraction
Frame-level ITD in each subband is then calculated using nor-
malized cross correlation (NCC) [8, 13] between li and ri with
a rectangular window of length W and shift of length Ws. τi,j
is the ITD of ith subband in the jth frame and is given by

τi,j = argmax
τ

Ci,j(τ), (1)

where Ci,j is the NCC function. In addition to this, exponential
interpolation is used to obtain fractional delays [13].

2.3. GMM Parameter Estimation
GMMs are trained on clean speech ITDs of each subband in
each direction. As shown in [13], ITD distributions of high-
frequency subbands have multiple modes . Hence, the need for
GMMs. Information theoretic criteria such as Akaike Informa-
tion Criterion (AIC) [26] and Bayesian Information Criterion
(BIC) [27] are used to evaluate the optimum number of com-
ponents in each GMM. The optimal number of components is
obtained using AIC as well as BIC. The lower number between
the two is chosen as the optimal number of components.

2.4. Likelihood and Localization
Suppose we considerD directions. Then λi,d is the set of GMM
parameters for the ith subband in the dth direction where d
ranges from 1 to D. τi,j denotes the ITD of the ith subband
in the jth frame. Then, p(τi,j |λi,d) is calculated ∀i, d. Given
a test binaural speech, May et al. [13] combined the likelihoods
of all the subbands, for each d to obtain a single likelihood for
each direction. And then, the direction with the maximum like-
lihood (ML) is chosen as the DoA estimate in the jth frame.

DoAj = argmax
d∈{1,..,D}

N∑

i=1

log p(τi,j |λi,d) (2)

The DoAs from multiple number of frames (nf ) are pooled
to obtain the DoA with the maximum frequency of occurrence.

3. Proposed Subband Weighting
We propose a weighted maximum likelihood (WML) method in
which the DoA estimate in the jth frame is given by

DoAj = argmax
d∈{1,..,D}

N∑

i=1

wi log p(τi,j |λi,d), (3)

where wi is the weight corresponding to the ith subband. With
the motivation to weight subband likelihoods based on their re-
liabilities, the method to obtain these weights is described in the
following subsections.

3.1. Subband Reliability
Reliability of a subband is measured as a quantity that is in-
versely proportional to the average localization error of that
subband. To calculate the localization error of each subband
we need the frame level direction estimates of each subband.

DoAi,j = argmax
d∈{1,..,D}

log p(τi,j |λi,d), (4)

where DoAi,j is the DoA estimate of the ith subband in the
jth frame. The frame level estimates are then pooled over nf
frames to obtain the final DoA. Figure 2(a) shows the ITD dis-
tributions of 25 azimuthal directions in 4 different subbands. It
can be seen that subband at 80 Hz has a lot of overlap among
the distributions unlike 518.8 Hz whose distributions are well
separated. This means that subband at 518.8 Hz is more re-
liable than 80 Hz. In a previous work [24], we evaluated the
subband localization errors for clean speech using speech seg-
ments of duration nf = 100. However, here we use nf = 1. This
is equivalent to sampling ITDs from each of the trained GMMs
and finding the localization error due to the samples that are in-
correctly localized. Hence, choosing nf = 1 is a better way of
measuring discrimination amongst GMMs in a subband. The
average localization errors of subbands obtained using nf = 1
is shown in figure 2(b) (top row). As hypothesized, subband at
518.8 Hz has a localization error lower than that of 80 Hz.
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Figure 3: An illustration of the α values obtained by sampling
f(α, T ) for 12 samples of α using T = 14.42.

Now, we propose a reliability measure which is obtained
using the localization error of each subband. As seen in the
top row of figure 2(b) each subband localization error (Si) is
subtracted from a chosen threshold (T ) to obtain the reliability
(Ri) of the ith subband shown in the bottom row. Now, these
reliabilities can be used as the subband weights.
3.2. Non-Linear Warping
In the previous section, reliabilities are obtained using the sub-
band localization errors of clean speech. The relative reliabil-
ities of different subbands might vary in the presence of noise
and it can also be SNR dependent. Also, Ri = T − Si is one
way, amongst many other ways, of obtaining reliability. So, to
account for these possibilities, we introduce non-linear warp-
ing of the obtained reliabilities so as to span over a wide range
of possible reliabilities which are used to compute the subband
weights. The weight computation and warping function used
are defined as follows.

wα,T (i) =
2T

π
arctan

(
(1− α)
(1 + α)

tan

(
Riπ

2T

))
, (5)

where α is the warping parameter and wα,T (i) is the weight of
the ith subband. Top row of figure 2(c-g) shows the warping
functions for different values of α. The corresponding warped
weights are shown respectively in the bottom row. It should be
noted that choosing α = -0.9999 is equivalent to weighting all
the subbands equally. However, α = 0.9999 almost corresponds
to choosing just one subband corresponding to the lowest lo-
calization error, i.e., the highest reliability. So, given a pair of
parameters (α, T ) and the subband errors (Si), the correspond-
ing weights are calculated as per the following steps.
Step1 : Si ← Si −min(Si),
Step2 : Ri ← T − Si,
Step3 : wα,T (i)← Substitute Ri, α and T in eqn. (5)
Step1 is essential to ensure that the subband with the mini-
mum error (maximum reliability) is always given the maximum
weight equal to T .
3.3. α Sampling
α has a range of (−1, 1). However, uniformly choosing alphas
in this range is not reasonable as the rate of change of weights
is not linear with α. We define the rate of change of weights as

v(α, T ) = lim
δ→0

1

2δ

N∑

i=1

(wα+δ,T (i)− wα−δ,T (i))2, (6)

where v(α, T ) is the rate of change of weights at (α, T ). We
then integrate this function with respect to α to get the cummu-
lative change, f(α, T ). Figure 3 shows f(α, T ) for T = 14.42.
f(α, T ) is then used to select different values of α. f(1, T ) is
equal to the total cummulative change. To obtain n samples of
α we find the α such that f(α, T ) = f(1,T )

n
, 2f(1,T )

n
,...,f(1, T ).

The motivation is to sample more α values in the regions with
higher rate of change of weights. In figure 3 it can be seen that
upto α ∼ 0.8 there is hardly any increase in f(α, T ). However,
it then increases steeply. As it can be seen in figure 3, there is a
higher density of samples close to α=1.

3.4. Best SNR independent weights
For each SNR, we calculate the average localization error of
WML using all possible (α, T ) pairs. Let Eα,T (k) be the av-
erage localization error of WML at the kth SNR obtained us-
ing (α, T ). Then, the minimum localization error for the kth

SNR is given by Emin(k) = min
α,T

Eα,T (k). Now, to obtain the

best SNR independent weights (BSIW), we need to obtain the
(α, T ) pair which performs best over all SNRs combined. The
best (α, T ) pair is given by

(αbest, Tbest)← argmin
α,T

nSNR∑

k=1

(Eα,T (k)− Emin(k))2, (7)

where nSNR is the total number of SNRs considered.

4. Experiments and Results
4.1. Database

Speech from TIMIT database [28] is used for all experiments.
Binaural speech is simulated using HRIRs of Subject 003 from
the CIPIC database [25].

4.2. Experimental Setup

Binaural speech data preparation: Localization experiments
are performed only in the frontal horizontal plane. The CIPIC
database consists of HRTFs of 25 directions in the frontal hor-
izontal plane. Speech from the TIMIT database has a sam-
pling frequency of 16kHz, whereas CIPIC HRIRs are sampled
at 44.1kHz. Therefore, speech is upsampled to 44.1kHz and
then filtered through the HRIRs to obtain binaural speech cor-
responding to each direction.
ITD extraction & GMM parameter estimation: ITDs are cal-
culated using eqn. (1) with a frame duration of 20msec (W
= 882) and a frame shift of 10msec (Ws = 441). GMMs are
trained using frame-level ITDs that are computed from a train-
ing binaural speech of duration 10sec. This provides 1000
frames to train each of the 800 (25 directions × 32 subbands)
GMMs. EM algorithm [29] with random initialization is used
for parameter estimation. As described in Section 2.3, AIC and
BIC are used to compute the optimal number of Gaussian com-
ponents. However, the maximum number of components is re-
stricted to 20.
Localization error: Let φ be the actual azimuthal angle and
φ̂ be the estimated angle. Then the localization error is e =

|φ − φ̂|. Average localization error is obtained by taking the
mean of the localization errors in ns different binaural speech
segments. We use ns = 1000 for calculating subband reliability.
In all other experiments we consider ns = 180. The localization
errors are calculated in degrees.
Subband reliabilities: Subband reliabilities are calculated using
average localization error of each subband as per the procedure
outlined in section 3.1. Bottom row of Figure 2(b) shows the
obtained reliabilities. Subband with center frequency 518.8 Hz
has the highest reliabilty as it has the least average localization
error equal to 0.028°.
α Sampling & T : Thresholds are considered from 14.42 to 40
in steps of 0.5. It has been observed that the sampled α val-
ues do not change considerably with change in T . Hence, a
set of 100 α values common to all T has been sampled using
T = 14.42. A dense set of α starting from -0.9999 to 0.9999
with a step of 0.0001 have been considered to obtain f(α, T ).
δ = 0.00005 has been used to obtain the rate of change function
v(α, T ). 1/2δ factor in eqn. (6) has been omitted while calculat-
ing the rate of change as it is a common factor and does not af-
fect the sampling process. The 100 sampled α values are shown
in figure 4(a). They start with -0.9998 and end with 0.9999.
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Figure 4: (a) 100 sampled α values using T=14.42. (b) Surface plot of the localization error (◦) vs (α, T ) for nf = 10 at SNR = -12dB.
(c) Cross-section of the surface plot with fixed T = 39.92. (d) A zoom of the region in (c) with the highest density of α samples. (e) Best
(blue-) and the worst (red-∗) SNR independent weights corresponding to nf = 10.

  

Figure 5: The best SNR specific (blue-∗) and SNR independent
weights (green-). The worst SNR independent weights (red-·).

4.3. Results and Discussion
Best weights: We first evaluate the localization accuracy of
WML for all pairs of (α, T ) at different SNRs. We consider
SNRs varying from -20dB to 40dB in steps of 2 by adding
AWGN. The SNR is relative to each channel. We also consider
different durations of test speech i.e. nf = 10,40,70 & 100. Lo-
calization errors at every pair of (α, T ) for nf = 10 at SNR =
-12 dB is shown in the 3D surface plot in figure 4(b). Figure
4(c) shows the surface profile for a fixed T = 39.92. Figure 4(d)
zooms into the region with maximum density of α samples. It
can be seen that this region has the lowest localization errors.

The best (α, T ) pairs for each SNR for each nf are then
obtained as shown in figure 5. Now we obtain the best SNR
independent (α, T ) pair using the procedure outlined in Section
3.4. Similarly, we also find the worst SNR independent (α, T )
pair i.e., the (α, T ) pairs that maximize the quantity on the right
hand side of eqn. (7). The best and the worst SNR independent
(α, T ) pairs obtained for each nf are shown in figure 5 and in
the table below.

αbest Tbest αworst Tworst
nf = 10 0.9996 23.42 -0.9998 15.92
nf = 40 0.9997 17.92 -0.9998 15.92
nf = 70 0.9998 26.42 -0.9998 38.42
nf = 100 0.8152 28.92 -0.9998 38.92

The weights corresponding to (αbest, Tbest) and
(αworst, Tworst) of nf=10 are shown in figure 4(e). As
seen in the figure, using the best weights is almost equivalent
to selecting just the most reliable subband i.e. subband with
center frequency 518.8 Hz. On the other hand, using the worst
set of weights uniformly weighs all the subbands. This is
equivalent to ML.
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Figure 6: Localization error vs SNR for different durations (nf )
of test speech.

Performance Evaluation:The following schemes are evaluated:
WML with reliabilities in Section 3.1 as weights (WML(α=0)),
WML with the best SNR independent weights (WML-BSIW),
WML with the worst SNR independent weights (WML-WSIW)
and WML with the best SNR specific weights (WML-BSSW).
As seen in figure 6, WML-BSIW performs much better than
ML especially at very low SNRs with an average localization
accuracy improvement of upto 30° to 40°. The performance
of WML-WSIW is close to ML. αworst for all values of nf
is equal to -0.9998. Choosing α = -0.9998 is almost equiva-
lent to uniformly weighing all subbands which is the same as
ML. This shows that uniformly weighing all subbands has the
lowest performance among all the weights considered. Another
important observation is that WML-BSIW performs as good as
WML-BSSW at all SNRs. This suggests that in the presence of
AWGN, choosing a fixed set of weights over all SNRs yields a
performance comparable to using SNR specific weights.

5. Conclusions
We propose a weighted Maximum Likelihood (WML) method
for binaural speech source localization. We present a mea-
sure of reliability of each subband obtained by using frame
level localization error which measures the discrimination of
the trained GMMs in each subband. This reliability is, in turn,
used as the weights with the inclusion of non-linear warping to
account for changes in reliabilities with SNR and also to span a
larger space of possible weights. Experimental results with the
best set of weights show that WML performs better than ML.
It has also been observed that WML-BSIW performs as good
as WML-BSSW suggesting that in the presence of AWGN, se-
lection of SNR specific weights is not necessary. It would be
interesting to extend this weighting scheme to other kinds of
noisy conditions including diffuse noise and reverberation.

864



6. References
[1] S. Argentieri, P. Danes, and P. Souères, “A survey on sound source

localization in robotics: From binaural to array processing meth-
ods,” Computer Speech & Language, vol. 34, no. 1, pp. 87–112,
2015.

[2] J.-M. Valin, F. Michaud, J. Rouat, and D. Létourneau, “Robust
sound source localization using a microphone array on a mobile
robot,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, 2003, pp. 1228–1233.

[3] H. Do, H. F. Silverman, and Y. Yu, “A real-time SRP-PHAT
source location implementation using stochastic region contrac-
tion (SRC) on a large-aperture microphone array,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 1, 2007, pp. 121–124.

[4] J. Benesty, “Adaptive eigenvalue decomposition algorithm for
passive acoustic source localization,” The Journal of the Acous-
tical Society of America, vol. 107, no. 1, pp. 384–391, 2000.

[5] Y. Tamai, S. Kagami, H. Mizoguchi, Y. Amemiya, K. Nagashima,
and T. Takano, “Real-time 2 dimensional sound source localiza-
tion by 128-channel huge microphone array,” in 13th IEEE Inter-
national Workshop on Robot and Human Interactive Communica-
tion, 2004, pp. 65–70.

[6] D. Pavlidi, A. Griffin, M. Puigt, and A. Mouchtaris, “Real-time
multiple sound source localization and counting using a circu-
lar microphone array,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 10, pp. 2193–2206, 2013.

[7] C. P. Brown and R. O. Duda, “A structural model for binaural
sound synthesis,” IEEE Transactions on Speech and Audio pro-
cessing, vol. 6, no. 5, pp. 476–488, 1998.

[8] N. Roman, D. Wang, and G. J. Brown, “Speech segregation based
on sound localization,” The Journal of the Acoustical Society of
America, vol. 114, no. 4, pp. 2236–2252, 2003.

[9] C. Faller and J. Merimaa, “Source localization in complex listen-
ing situations: Selection of binaural cues based on interaural co-
herence,” The Journal of the Acoustical Society of America, vol.
116, no. 5, pp. 3075–3089, 2004.

[10] H. Viste and G. Evangelista, “Binaural source localization,”
in Proc. 7th International Conference on Digital Audio Effects
(DAFx-04), invited paper, no. LCAV-CONF-2004-029, 2004, pp.
145–150.

[11] V. Willert, J. Eggert, J. Adamy, R. Stahl, and E. Korner, “A proba-
bilistic model for binaural sound localization,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36,
no. 5, pp. 982–994, 2006.

[12] M. Raspaud, H. Viste, and G. Evangelista, “Binaural source local-
ization by joint estimation of ILD and ITD,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 1, pp.
68–77, 2010.

[13] T. May, S. van de Par, and A. Kohlrausch, “A probabilistic model
for robust localization based on a binaural auditory front-end,”
IEEE Transactions on Audio, Speech, and Language processing,
vol. 19, no. 1, pp. 1–13, 2011.

[14] T. May, N. Ma, and G. J. Brown, “Robust localisation of multiple
speakers exploiting head movements and multi-conditional train-
ing of binaural cues,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2015, pp. 2679–
2683.

[15] A. Deleforge and R. Horaud, “2D sound-source localization on
the binaural manifold,” in IEEE International Workshop on Ma-
chine Learning for Signal Processing (MLSP), 2012, pp. 1–6.

[16] J. Woodruff and D. Wang, “Binaural localization of multiple
sources in reverberant and noisy environments,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20, no. 5,
pp. 1503–1512, 2012.

[17] F. Keyrouz, “Advanced binaural sound localization in 3-D for hu-
manoid robots,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 63, no. 9, pp. 2098–2107, 2014.

[18] D. S. Talagala, W. Zhang, T. D. Abhayapala, and A. Kamineni,
“Binaural sound source localization using the frequency diversity
of the head-related transfer function,” The Journal of the Acousti-
cal Society of America, vol. 135, no. 3, pp. 1207–1217, 2014.

[19] X. Li, L. Girin, R. Horaud, and S. Gannot, “Estimation of the
direct-path relative transfer function for supervised sound-source
localization,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 11, pp. 2171–2186, 2016.

[20] X. Zhong, L. Sun, and W. Yost, “Active binaural localization
of multiple sound sources,” Robotics and Autonomous Systems,
vol. 85, pp. 83–92, 2016.

[21] M. Zohourian and R. Martin, “Binaural speaker localization and
separation based on a joint ITD/ILD model and head movement
tracking,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2016, pp. 430–434.

[22] N. Ma, T. May, and G. J. Brown, “Exploiting deep neural net-
works and head movements for robust binaural localization of
multiple sources in reverberant environments,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 25,
no. 12, pp. 2444–2453, 2017.

[23] D. Wang and G. J. Brown, “Computational auditory scene analy-
sis: Principles, algorithms, and applications,” 2006.

[24] G. R. Karthik and P. K. Ghosh, “Subband selection for binaural
speech source localization,” Proc. Interspeech 2017, pp. 1929–
1933.

[25] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano,
“The CIPIC HRTF database,” in IEEE Workshop on the Appli-
cations of Signal Processing to Audio and Acoustics, 2001, pp.
99–102.

[26] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–
723, 1974.

[27] G. Schwarz et al., “Estimating the dimension of a model,” The
Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[28] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “DARPA TIMIT acoustic-phonetic continous speech cor-
pus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon techni-
cal report n, vol. 93, 1993.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm,” Journal of
the Royal Statistical Society. Series B (methodological), pp. 1–38,
1977.

865


