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Abstract
The invention of the Variational Autoencoder enables the ap-
plication of Neural Networks to a wide range of tasks in un-
supervised learning, including the field of Acoustic Unit Dis-
covery (AUD). The recently proposed Hidden Markov Model
Variational Autoencoder (HMMVAE) allows a joint training of
a neural network based feature extractor and a structured prior
for the latent space given by a Hidden Markov Model. It has
been shown that the HMMVAE significantly outperforms pure
GMM-HMM based systems on the AUD task. However, the
HMMVAE cannot autonomously infer the number of acoustic
units and thus relies on the GMM-HMM system for initializa-
tion. This paper introduces the Bayesian Hidden Markov Model
Variational Autoencoder (BHMMVAE) which solves these is-
sues by embedding the HMMVAE in a Bayesian framework
with a Dirichlet Process Prior for the distribution of the acous-
tic units, and diagonal or full-covariance Gaussians as emis-
sion distributions. Experiments on TIMIT and Xitsonga show
that the BHMMVAE is able to autonomously infer a reasonable
number of acoustic units, can be initialized without supervision
by a GMM-HMM system, achieves computationally efficient
stochastic variational inference by using natural gradient de-
scent, and, additionally, improves the AUD performance over
the HMMVAE.
Index Terms: Acoustic Unit Discovery, Bayesian, Structured
Variational Autoencoders, Underresourced Languages

1. Introduction
The task of acoustic unit discovery (AUD) can be defined as
segmenting speech while simultaneously clustering these seg-
ments into a reasonable number of acoustic units without the
help of supervision through training labels. As such, it can
be seen as the unsupervised counterpart of acoustic modeling
known from automatic speech recognition. One major appli-
cation domain is the treatment of underresourced languages,
where annotated databases and linguistic resources are scarce.

Since the introduction of the variational autoencoder (VAE)
by [1], various attempts have been made to extend this type of
deep generative modeling into different directions, with AUD
among many others. Especially the structured VAE (SVAE)
framework developed by [2] is well suited for AUD since it
offers the advantage of combining a traditional probabilistic
graphical model (PGM) with the power of deep neural net-
works (NNs). A current model proposed in [3], called the
hidden Markov model variational autoencoder (HMMVAE), is
an instance of the SVAE [2] specifically designed to tackle
the task of generative acoustic modeling and AUD. Here, one
hidden Markov model (HMM) is used for every hypothesized
acoustic unit to structure the latent space. Experiments have
shown promising improvements when compared to the widely
known GMM-HMM AUD system proposed in [4]. In this work,

we aim to improve the HMMVAE by extending it with a full
Bayesian treatment of the latent probabilistic model. Most im-
portantly, this extension also allows the model to autonomously
learn the necessary number of acoustic units by making use of
the Dirichlet process (DP) known from Bayesian nonparamet-
rics [5]. In addition, to impose a regularization effect on the
PGM learning process, all of its learned parameters now have
appropriate prior distributions. However, the encoder and de-
coder NNs of the model are learned by a minibatch stochastic
gradient descent (SGD) based algorithm. Therefore, utilizing
the usual variational expectation-maximization (EM) algorithm
with a graphical model parameter update only after every epoch
would lead to mismatched learning velocities between NNs and
PGM and thus slow convergence. We side-step this by employ-
ing stochastic variational inference (SVI) to train the PGM as
proposed in [6]. This requires a reparametrization of the PGM
in terms of exponential family distributions.

2. Model Description
2.1. Variational Autoencoder

The standard VAE is a generative model able to represent a
complex data distribution on the observation y by combining
simple distributions and neural networks. In this section, all un-
derlying distributions are Gaussians and the data is assumed to
be independent and identically distributed (i.i.d.). The assump-
tion that an underlying latent code vector x has caused the ob-
servation can be stated as a conditional density called decoder:

p(y|x) = N (y; f(x; δ), σ2I), (1)

where the function f(x; δ) is a NN paremetrized by the set
δ to capture complex relationships between the observation
and the code, while the latter is assumed to be drawn from a
zero-mean, isotropic unit-variance Gaussian prior distribution:
p(x) = N (x; 0, I). Since the true posterior p(x|y) is in-
tractable due to the NN, an approximated posterior, called the
encoder, is postulated as a Gaussian with mean and variance
vectors depending on the observation,

q(xn;φ) = N (xn;µn, diag{σ2
n}), (2)

where the mapping is given by yet another NN parameter-
ized by φ: (µn,σn) = g(yn;φ). Given the dataset Y =
{y1, . . . ,yN} and assuming a corresponding set of latent codes
X = {x1, . . . ,xN}, the parameters of both NNs can be learned
by maximizing the evidence lower bound (ELBO) – or, equiva-
lently, minimizing its negative – which decomposes into terms
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involving only one observation each:

log p(Y) ≥ L(VAE)(δ, φ) = Eq(X )

[
log

p(Y,X ; δ)

q(X ;φ)

]

= −
N∑

n=1

Eq(xn)‖yn − f(xn; δ)‖2
2σ2

− Eq(xn)

[
log

p(xn)

q(xn;φ)

]
.

The first term, usually called the reconstruction loss, has no
closed form due to the complicated dependence on xn. This
is resolved through a sampling approximation of the expec-
tation while making use of the reparametrization trick [1]
xn = σn � ε + µn, ε ∼ N (0, I) to allow gradient calcula-
tion despite using sampling. For large datasets, using a single
sample to approximate the expectation has shown to offer suf-
ficient variability and greatly speeds up inference. The second
term, acting as a regularizer on φ, is the Kullback-Leibler diver-
gence between two Gaussians and can be given in closed dif-
ferentiable form. Optimization can thus be performed by mini-
batch SGD. It has been shown that a complex decoder can lead
to blurry reconstructions while a deep encoder can lead to unin-
formative latent variables [7, 8]. Treating the variance of the de-
coder distribution as a hyperparameter mitigates this issue and
allows for an adjustable trade-off between the reconstruction
loss and the regularizer. In this configuration, the model can be
seen as an instance of the β-VAE as introduced in [9].

2.2. HMMVAE

To extend the modeling capabilities of the VAE towards datasets
where every element is a time series, i. e. Y={Y1, . . . ,YN},
with Yn=(yn,1, . . . ,yn,Tn), 1≤t≤Tn, in [3] it is proposed
to incorporate a structured PGM prior for the latent code
vector consisting of an HMM. The state at each time step
is modeled by a sequence of discrete latent state variables
Z=(z1, . . . , zT ), 1≤zt≤Ns ∀t, where Ns is the number of
states and the sequence index is omitted for brevity. Each state
emission density is given by a Gaussian, while further parame-
ters are inital state and transition probabilities:

p(xt|zt=k) = N (xt,µk,Σk),

p(z1;π) =

Ns∏

i=1

π
[z1=i]
i ,

p(zt|zt−1; A) =

Ns∏

i=1

Ns∏

j=1

a
[zt−1=i,zt=j]

ij ,

where the Iverson bracket is used for state indexing. The full set
of PGM parameters will be denoted by Ω=(A,π,Σ,µ) with
Σ,µ denoting the Gaussian parameters for all classes.
Again, an approximate posterior has to be stated for infer-
ence, where a mean field approximation is used which still has
to respect the Markov chain structure of the state sequence:
q(X,Z)=q(Z)

∏T
t=1 q(xn;φ). All parameters of either the

PGM and the NNs are assumed to be deterministic and training
is again performed by a minibatch SGD of the ELBO, where
the contribution of a single sequence is given by

L(HMMVAE) = Eq(X,Z)

[
log

p(Y,X,Z; δ,Ω)

q(X,Z;φ,Ω)

]
.

The encoder q(xt;φ) and decoder p(yt|xt; δ) are modeled ex-
actly as in eq. 2 and 1, respectively, due to intractability of
closed form variational inference (VI). To calculate the ELBO,

the state posterior q(zt) and joint posterior q(zt−1, zt) are
needed. They can be calculated by extracting the optimal state
sequence posterior from the ELBO:

log(q∗(Z)) =
T∑

t=1

Ns∑

j=1

[zt=j]Eq(xt)[logN (xt;µj ,Σj)]

+
T∑

t=2

Ns∑

j=1

Ns∑

i=1

[zt−1=i, zt=j] log aij+

Ns∑

j=1

[z1=j] log πi + C.

Since this term has the same structure as the log joint density
of all states and emissions of a standard HMM, the needed pos-
teriors can be calculated by the forward-backward algorithm.
Making the replacements q(zt) → [zt=̂t] and q(zt−1, zt) →
[zt=̂t, zt=ı̂t−1] with ̂t and ı̂t−1 being Viterbi [10] estimates
of the most probable current and previous state, respectively, is
also possible. Finally, (semi-)supervised learning can be done
as well by simply plugging in the true state labels instead. All
necessary parameters (δ, φ,Ω) can now be trained using mini-
batch stochastic gradient ascent.

The AUD task can be tackled with this approach by stating
a transition matrix structure where each hypothesized acoustic
unit (AU) is implicitly represented by an internal three-state
left-to-right topology while all AUs are connected. However,
the number of AUs U has to be set as a hyperparameter, result-
ing in Ns = 3U states in total.

2.3. Bayesian HMMVAE

The shortcomings of the HMMVAE are addressed here by em-
bedding the PGM in a variational Bayesian framework. All
PGM parameters Ω are now seen as random variables as well.
All priors are chosen as conjugate w.r.t. the functional form of
the conditional distributions containing the respective parame-
ters. Most importantly, the AU active in each speech segment
is now modelled as a categorical variable ct and all labels of
the n-th sequence make up the set Cn = (cn,1, . . . , cn,Tn).
Assuming the DP as a prior for the AU distribution probability
vector π(DP) allows the system to autonomously infer the num-
ber of AUs. In a DP, the number of acoustic units can in theory
approach infinity. In practice however a maximum number of
classes has to be given as a truncation parameter, i.e. U < ∞,
which should be sufficiently large. For variational inference, the
DP can either be approximated by a truncated stick-breaking
prior as in [11, 4] or by a symmetric Dirichlet distribution. Ac-
cording to [12], the latter should be preferred and our conducted
experiments lead to the same conclusion. Thus, the model for
the acoustic units becomes

p
(
c,π(DP)

)
=

(
U∏

k=1

(π(DP)
k )[c=k]

)
·Dir

(
π(DP);

α

T
1U
)
,

with 1U being the U -dimensional vector consisting of only
ones.

The unit sequence strongly influences the state sequence Z.
Furthermore, the transitions between the unit-HMMs have to be
modelled as in [4].

Similar to the HMMVAE, the latent emission distribution
is a Gaussian, but with either a Normal-Wishart prior for full
covariance matrices or a Normal-Gamma prior for the diagonal
case placed on its parameters. With this structure, the approx-
imate posterior distribution q(Ω;λ) of the global PGM param-
eters shows a conjugacy structure which depends on a set λ of
variational parameters. Assuming a mean field approximation
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q(X,Z,C,Ω;φ, λ) = q(Z,C)
∏T
t=1 q(xn;φ)q(Ω) similar to

the HMMVAE case, the lower bound training objective for a
single sequence can be split into three different parts, where λ0

are the parameters of the PGM prior distributions and H(·) de-
notes the entropy of a given distribution:

L(BHMMVAE) = Eq(X,Z,C,Ω)

[
log

p(Y,X,Z,C,Ω; δ, λ0)

q(X,Z,C,Ω;φ, λ)

]

= Eq(X;φ) [log p(Y|X; δ)] + H(q(X;φ))

+ Eq(X;φ)

[
Eq(Z,C,Ω;λ)

[
log

p(X,Z,C,Ω;λ0)

q(Z,C,Ω;λ)

]]
. (3)

The inner expectation value of the third term is the ELBO for
a Bayesian HMM as given in [4] and only the emission proba-
bilities contain X. Thus, the update for each minibatch can be
separated into a sequence of steps:

1. Code posterior samples xln ∼ q(xn)∀n are drawn. As
before, one sample per time index is usually sufficient.

2. The latent PGM variables are inferred with the forward-
backward (FB) or Viterbi algorithm, and the latent pa-
rameters are trained with a VI method using only the
third term.

3. The decoder network parameters δ are learned using only
the first term and the samples.

4. The encoder network parameters are trained using all
three terms, but only the emission model part is needed
from the third term.

Due to the latent PGM parameters affecting every sequence,
standard VI would lead to a batch variational EM scheme,
where their variational parameters would only be updated after
visiting all sequences of the whole dataset. Since the NN pa-
rameters are still trained by minibatch SGD, this would lead to
a mismatch, where the NN training would find vastly different
conditions after each batch update, leading to slow convergence.

In order to increase the matching between the two training
algorithms, SVI [6] is used for optimizing the PGM parameters,
resulting in two different gradient-based learning algorithms
which visit each minibatch simultaneously. The core idea be-
hind SVI is that the ordinary gradient of the ELBO w.r.t. the
variational parameters would involve calculating their Fisher
information matrix I(λ), which is computationally expensive.
However, it has been shown in [13] that taking the so called nat-
ural gradient ∇̃λL = I(λ)−1∇λL works better anyway since it
allows optimization in the space of distributions instead of the
parameter space. When the distributions are parametrized as in-
stances of exponential families, this calculation exactly cancels
out the troublesome matrix, leaving the expression

∇̃λL = λ̂n − λ,

where λ̂n is the optimal estimate for the variational parameters
for the current example. Plugging this result into the gradient
ascent rule with τ as the learning rate leads to the remarkably
simple result

λn+1 = λn + τ
(
λ̂n − λn

)
= (1− τ)λn + τ λ̂n

i.e. the update rule is a first order lowpass filter between the last
value and the best estimate for the current example. Extending
this result to a minibatch algorithm, one arrives at

λ̂m =
N

Mm

∑

n∈Mm

λ̂n,

i.e. the arithmetic mean over all examples in the current mini-
batch with index m, the index setMm and Mm = |Mm| as
the number of examples in the current minibatch, multiplied by
N , the total number of examples, to arrive at a bias-free esti-
mate [6].

3. Experiments
3.1. Setup

The proposed model is evaluated through the task of unsuper-
visedly learning acoustic units on the TIMIT database [14] and
on the NCHLT Xitsonga corpus [15] as used in the 2015 Zero
Resource Challenge [16] and compared to the HMMVAE and
the Bayesian Gaussian mixture model (GMM)-HMM as given
in [4]. For the latter, the authors’ reference implementation [17,
(AMDTK)] is used.

In the case of TIMIT, training and testing is carried out
on the complete datasets including the dialect sentences (SA),
thus using all 6300 utterances, with 100 randomly chosen utter-
ances used for cross validation. Likewise, the whole Xitsonga
database is used, containing 2 hours and 30 minutes of speech
in total.

For both databases, each utterance is transformed into the
log-mel domain using an STFT window size of 25 ms with a
window overlap of 10 ms, and a filterbank consisting of 40 mel
filters. Furthermore, delta and delta-delta features are calcu-
lated, totaling in a feature dimension of 120, and mean-variance
normalization is applied.

For evaluation, the normalized mutual information (NMI)
as described in [4] is used: After training, each frame has an
AU label assigned by the AUD system and a phone label given
by the ground-truth transcription, respectively. By means of
counting, a normalized confusion matrix can be calculated as
an estimate for the joint probability between AUs and phones
and the NMI is defined as NMI = I(U ;P )/H(P ), where the
phones are P , the AUs are U , the numerator is the mutual infor-
mation between them and the denominator is the entropy of the
phones, resulting in a measure of their statistical dependency
normalized to the interval [0, 1]. Clearly, the higher the NMI,
the better. Further note that the NMI depends on the number of
AUs. Thus, only NMI values achieved with roughly the same
number of AUs are comparable.

Additionally, to incorporate another more intuitive mea-
sure, the equivalent phone error rate (PER) is calculated.
Firstly, each AU is mapped to the phone with which it over-
laps most according to the confusion matrix and uninterrupted
sequences of the same unit are contracted to only one occur-
rence. Then, the PER is calculated as PER = (Sub. + Ins. +
Del.)/Tot.), i.e. the edit distance between the mapped AU tran-
scription and the ground truth transcription, normalized to the
total number of phones instances in the ground truth transcrip-
tion. This measure is an adaptation to the many-to-one word
error rate (WER) given in [18]. Both measures are already used
in [3].

The model architecture is as follows: Each AU to be found
is modeled as a three-state HMM and an overall transition ma-
trix is constructed by using the AU weights as given by the
DP as the transition probabilities between different units. Both
NNs show a feed-forward structure with two hidden layers of
512 units each, while the dimensionality of the latent code is
chosen as Dx = 32. The latent GMM prior parameters are
m0 = 0, κ0 = 1, ν = Dx+1,W0 = I in case of a Normal-
Wishart prior for full covariance matrices. In the case of di-
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Table 1: Comparison of AUD results on the TIMIT database

model/init cov τ ω0 PER NMI #AU

GMM-HMM D - - 65.42 37.84 72
HMM-VAE F - - 58.54 43.90 72

BHMMVAE
pre-train

D 0.0010 1.000 58.74 45.08 72
D 0.0010 0.100 56.57 45.97 85
D 0.0010 0.010 57.31 44.58 87
D 0.0100 0.010 63.12 38.81 37
F 0.0010 0.010 62.15 40.13 47
F 0.0005 0.010 60.91 42.53 47
F 0.0001 0.010 62.15 40.13 47

BHMMVAE
cluster

F 0.005 1.000 58.81 45.49 89
F 0.005 0.010 57.91 45.92 90
F 0.010 1.000 58.26 44.71 87
F 0.005 0.001 57.41 45.05 89

agonal covariance matrices, a Normal-Gamma prior is used,
where m0 = 0, κ0 = 1, α0 = 1,β0 = 1. In both cases, the
parametrization is done as in [19]. Since the truncated stick-
breaking approximation of the DP has shown to be unstable
in the experiments, a symmetric Dirichlet distribiution approx-
imation as in [12] with a truncation of U=100 is used instead
and the concentration parameter ω0 is varied in the experiments.
Furthermore, two different initialization strategies for the model
are compared:

• The pre-train strategy is taken from [3]. Here, a ran-
domly generated AU alignment with a unit duration of
6 frames and a state duration of 2 frames is generated
for each utterance. Then, pseudo-supervised training is
performed for 20 epochs with the random alignment as a
tentative target label sequence.

• The cluster strategy consists of an up-front training of
a standard VAE for 20 epochs to initialize the encoder
and decoder, subsequently encoding the feature vectors
of each utterance into the code space and performing a
k-means clustering using 3 · 100 clusters. Then, a ran-
dom assignment between clusters and states is performed
with the cluster mean and assignment count used as the
posterior mean and posterior count variables of the cor-
responding state, respectively.

The model training is performed with a constant minibatch
size of Mm=16 utterances and terminated after 100 epochs.
Adam [20] with a fixed step size of 0.001 and gradient clip-
ping is used for training the NN parameters, while the PGM
parameters are simultaneously updated in each minibatch using
SVI. Since these two learning processes are running in an inter-
leaved manner, their convergence behaviour should be matched
for good results. We therefore investigate the impact of the SVI
learning rate τ .

3.2. Results

The results for TIMIT are given in Table 1. The covariance ma-
trix type is either diagonal (D) or full (F). In addition to the mea-
sures explained above, the resulting number of units is given for
each result. In the first two results rows the performance of the
GMM-HMM and HMMVAE are given as a reference [3], where
the latter had been initialized with the former. The Bayesian
hidden Markov model variational autoencoder (BHMMVAE) is
a stand-alone system, which does not require the GMM-HMM

Table 2: Comparison of AUD results on the Xitsonga database

model cov τ ω0 PER NMI #AU

GMM-HMM D - - 72.60 35.00 69
HMM-VAE F - - 61.90 37.60 69

BHMMVAE
pre-train

D 0.001 1.000 62.65 37.08 69
F 0.001 1.000 62.64 37.08 69
D 0.001 0.100 62.09 40.06 100
D 0.001 0.010 62.69 39.85 96
D 0.001 0.001 62.47 39.14 98
D 0.005 0.010 64.45 37.72 56
F 0.001 0.010 62.57 37.06 100
F 0.005 0.010 61.97 39.67 61

for initialization. In the third results row U=72 and ω0=1.0
were fixed to achieve the same number of units as the GMM-
HMM and HMMVAE for ease of comparison. The NMI is im-
proved over those, but other combinations of parameters, es-
pecially with ω0<1, lead to even better results. Moreover, the
model is fairly robust w.r.t. variations in the concentration pa-
rameter. With the pre-train strategy, a high value of the SVI
learning rate τ leads to results where more units are discarded
and the performance suffers. Note that full covariance matrices
do not work well with the pre-train strategy. This is most likely
caused by the increased number of parameters, which results
in a model too flexible. A successful training of full covariance
matrices is possible when increased guidance is provided by the
cluster initialization strategy. The results come close to the bet-
ter outcomes of the diagonal matrices in combination with the
pre-train strategy, but are unable to improve despite the higher
computational complexity.

On the Xitsonga setup, all experiment runs for the BHMM-
VAE are therefore performed using the pre-train strategy. In the
same manner as done for TIMIT, U=72 and ω0=1 are set for
the first two rows to achieve full comparability. Overall, BH-
MMVAE achieves roughly the same performance as the HMM-
VAE or outperforms it w.r.t. the NMI, while the PER is usually
a bit higher. Taking both databases into account, the best choice
seems to be the pre-train strategy in combination with diagonal
covariance matrices, a small learning rate and a moderate to low
concentration parameter, i. e. τ = 0.001 and 0.1 ≤ ω0 ≤ 0.01.

4. Conclusions
We have developed a full Bayesian treatment of the HMM-VAE,
where the training relies on stochastic variational inference us-
ing the natural gradient. We have carried out experiments on
AUD on two databases, TIMIT and Xitsonga. The main find-
ings are: (a) the algorithm is able to find automatically a reason-
able number of AUs and can be trained stand-alone from scratch
without guidance by a GMM-HMM, and, (b) NMI and PER are
comparable to those obtained by the HMMVAE or even better.
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