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Abstract 

Speaker adaptation has been shown to be effective on speech 

recognition and evaluation of L2 speech. However, other fac-

tors, such as environments and foreign accents, can affect the 

speech signal in addition to speakers. Factorizing the speaker, 

environment and other acoustic factors is crucial in evaluating 

L2 speech to effectively reduce acoustic mismatch between 

train and test conditions. In this study, we investigate the effects 

of deep neural network factorized adaptation techniques on L2 

speech assessment in real speaking tests. Through recognition 

and automatic scoring experiments on L2 speech, we demon-

strate that factorized fMLLR and iVector based DNN adapta-

tion can better utilize adaptation data to efficiently adapt to 

complex speaker and environment conditions. Combining the 

factored components of iVectors and fMLLR transforms can 

further improve robustness of DNN models in speech recogni-

tion and automatic scoring of L2 speech in dynamic environ-

ments. 

Index Terms: automatic scoring, acoustic factorization, 

speaker and environment adaptation, L2 speech assessment 

1. Introduction 

Automatic scoring techniques based on automatic speech recog-

nition (ASR) have been developed to predict language learners’ 

proficiency [1-3]. These techniques are usually based on poste-

rior probabilities derived from ASR results of learners’ L2 

speech using acoustic models trained on native speech corpus. 

Because of acoustic mismatch between training and test condi-

tions, recognition accuracy of L2 speech usually is much lower 

than L1 speech. In our previous studies, speaker adaptation 

techniques have been proposed for L2 speech evaluation [4,5]. 

These Maximum Likelihood Linear Regression (MLLR) based 

acoustic model adaptation techniques are developed for tradi-

tional Gaussian mixture model (GMM) ASR systems. Over the 

past few years, however, Deep Neural Networks (DNNs) have 

become the state-of-the-art in acoustic modeling, due to the im-

provement in accuracy over conventional HMM-GMM frame-

work. We need to explore new adaptation techniques that can 

be applied to DNNs for L2 speech evaluation. 

Speaker and environment adaptation techniques can fall 

into two categories: model adaption that modifies the parame-

ters of the acoustic models to fit the test data and feature adap-

tion that modifies features to better fit the trained models. 

Model adaption techniques such as MLLR and Maximum A 

Posteriori (MAP) for adapting GMMs cannot be applied to 

DNNs. Due to the significantly higher number of parameters in 

DNNs, it is hard to adapt DNNs with only a small amount of 

data. Feature adaption techniques such as fMLLR and i-vectors 

are used for adapting DNNs and show improvements over 

speaker-independent DNN models [6-8]. 

In this study, we investigate the effects of feature adaption 

techniques on DNN based automatic scoring of L2 English 

speech spoken by Chinese high school students. The data we 

used in our experiments are from the recordings of real English 

speaking tests using Seaskyland Technologies’ E-exam system. 

In the Chinese city of Shenzhen, all high school students are 

required to take English speaking test twice a year, at the end of 

each school term. Most of them are taking the tests in a Com-

puter-Assisted Language Learning (CALL) classroom with 

more than 40 students speaking simultaneously. Therefore the 

recording environments can be dynamic with unpredictable 

background noises. In addition to speaker adaption, environ-

ment adaptation is also important for our automatic scoring 

tasks. 

In this paper, we investigate the effects of factored adapta-

tion techniques on automatic scoring of L2 speech in speaking 

tests. Both fMMLR and iVector based factorization are exam-

ined and demonstrated to be effective on L2 speech recognition 

and assessment in complex environments.  

2. Adaption Techniques 

2.1. fMLLR adaptation 

In the formulation of fMLLR, let 𝐱(𝑡) be the d-dimensional 

feature at time t, the adapted features are computed through the 

affine transform 

           𝐱̂(𝑡) = 𝐴𝐱(𝑡) + b = 𝐖𝝃(𝑡),                                           (1) 

where A is a 𝑑 × 𝑑 square matrix, b is the 𝑑 × 1 bias term, 

𝛏 = [1  𝐱𝑇]𝑇 is the input vector extended with an extra element 

equal to unity, and 𝐖 = [b   𝐀] is the d by d+1 transformation 

matrix.  

The transform parameters are estimated by optimizing the 

following auxiliary Q-function, 

             𝑄𝑀𝐿 = −
1

2
∑ 𝛾𝑚(𝑡){log |𝐴|2

𝑡,𝑚

 

                       +(𝐖𝝃(𝑡) − 𝝁(𝑚))
𝑇

𝚺(𝑚)−1(𝐖𝜉(𝑡) − 𝝁(𝑚))} ,   (2) 

where 𝝁(𝑚) and 𝚺(𝑚) are the mean and covariance for Gauss-

ian component m and 𝛾𝑚(𝑡) is the posterior probability of be-

ing in Gaussian m at time t. 

If we assume the covariance matrices to be diagonal: 

𝚺(𝑚) = 𝑑𝑖𝑎𝑔([1/𝛿1
(𝑚)2   1/𝛿2

(𝑚)2   …  1/𝛿𝑛
(𝑚)2]), let 𝒘𝑖 be 

the transposed rows of W, differentiating the auxiliary function 

with respect to the transform yields 

             
𝜕𝑄𝑀𝐿

𝜕𝒘𝑖
= 𝛽

𝒑𝑖

𝒑𝑖
𝑇𝒘𝑖

− 𝑮(𝑖)𝒘𝑖 + 𝒌(𝑖) = 0,                   (3) 
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where 𝛽 = ∑ 𝛾𝑚(𝑡)𝑡,𝑚  , 𝒑𝑖 is the extended vector cofactors of 

A and the sufficient statistics of 𝑮(𝑖) and 𝑘(𝑖) are as follows: 

           𝑮(𝑖) =  ∑ 𝝃(𝑡)𝝃(𝑡)𝑇

𝑡

∑
𝛾𝑚(𝑡)

𝛿𝑖
(𝑚)2 

𝑚

                                  (4) 

           𝑘(𝑖) =  ∑ 𝝃(𝑡)

𝑡

∑
𝛾𝑚(𝑡)𝜇𝑖

(𝑚)

𝛿𝑖
(𝑚)2 

𝑚

                                  (5) 

The fMLLR transforms can be updated as 

         𝒘𝑖 = (𝛼𝒑𝑖 +  𝒌(𝑖)) 𝑮(𝑖)−1                                          (6) 

where 𝛼 satisfies 

       𝛼2𝒑𝑖
𝑇 𝑮(𝑖)−1𝒑𝑖 +  𝛼𝒑𝑖

𝑇 𝑮(𝑖)−1 𝒌(𝑖) −  𝛽 = 0                (7)  

2.2. Factorized fMLLR 

[9] and [10] applied the nuisance attribute projection (NAP) [11] 

to acoustic latent factor analysis through orthogonal subspace 

projection. In this framework, a transform estimated in a com-

plex acoustic environment can be projected onto speaker and 

environment subspaces. The two subspaces are constructed to 

be orthogonal so the factored transforms on different subspace 

are forced to be independent. 

   We use this approach to factorize fMMLR transforms. Con-

sider an estimated d by d+1 fMLLR transformation matrix W 

described in 2.1., a super vector w can be constructed by stack-

ing the columns of W into a single vector with the dimension 

of  D = 𝑑(𝑑 + 1). The training corpus can be represented by a 

matrix E whose columns are transform supervectors {𝒘𝑖} that 

are estimated from the complete set of training data. 

Following the latent factor analysis method of Kenny [12], 

the fMLLR transform supervector 𝐰 which is dependent on 

speaker s and environment e, can be viewed as a sum of a 

speaker dependent vector and an environment dependent super 

vector, in addition to the sum of other components which ap-

proximates to the offset mean supervector 𝒘̅ over the entire 

training data: 

   𝐰 ≈ 𝒘̅ + 𝐰(s) + 𝒘(𝑒)                                          (8)  

To project 𝐰 onto the two subspaces, a low-rank matrix 

U which is related to speaker variability and a matrix V which 

is related to environment variability are introduced to represent 

𝐰(s) and 𝒘(𝑒). The equation (8) becomes, 

  𝐰 ≈ 𝒘̅ + [𝐔 𝐕] [
𝒙
𝒚]         𝑠. 𝑡.  𝑼 ⊥ 𝐕  

     = 𝒘̅ + ∑ 𝒖𝑖𝑥𝑖

𝑟𝑠

𝑖=1

+ ∑ 𝒗𝑗𝑦𝑗

𝑟𝑒

𝑗=1

                                (9) 

where 𝑟𝑠 is the number of speakers, 𝑟𝑒 is the number of envi-

ronments, x and y are factor-dependent weight vectors which 

quantify the amount of impact from speaker and environment, 

U is a 𝑫 × 𝑟𝑠 matrix which represents speaker subspace and V 

is a 𝐃 × 𝑟𝑠 matrix representing environment subspace. 

In order to remove one direction, e.g., V which represents 

environment variability, a projection P can be defined: 

             𝐏 = 𝐈 − 𝐕(𝑽𝑇𝑽)−1𝑽𝑇                               (10) 

Operating projection P on (9) yields, 

𝐏𝐰 = 𝐏𝒘̅ + 𝐏𝐔𝐱 + 𝐏𝐕𝐲                   
                               = 𝐏𝐰̅ + 𝐔𝐱                  (11) 

The projection removes environment component 𝐰(e) in (8) 

leaving speaker component 𝐰(s)  (i.e.,𝐔𝐱) intact. With the 

idea of using Nuisance Attribute Projection (NAP) in [10], the 

design criterion for P and correspondingly V which can be 

viewed as a set of vectors  𝐕 = [𝐯1, 𝐯2, … , 𝐯𝑟𝑒
], is 

𝐯∗ = argmin
𝐯,‖𝐯‖𝟐=𝟏

∑ 𝑎𝑖,𝑗

𝑖,𝑗

‖𝐏(𝐰𝑖 − 𝐰𝑗)‖
2

2
             (12) 

where 𝑤𝑖 and 𝑤𝑗 represent any pair of transforms in the train-

ing dataset E, 𝑎𝑖,𝑗 represents weight parameters whose value 

are set to be 1 if 𝐰𝑖 and 𝐰𝑗 represent the transforms of the 

same speaker, and 0 otherwise.  

The solution to (12) is an eigenvalue problem, 

   𝐊(𝑑𝑖𝑎𝑔(𝐕𝟏) − 𝐕)𝐊𝐯 =  λ𝐊𝐯                        (13) 

where 𝐊 = (𝐏𝐄)T(𝐏𝐄), and 1 is the vector of all ones. The de-

tailed deviation can be found in [10]. 

2.3. iVector based factorized adaptation 

iVectors which capture both speaker and environment specific 

information have been shown to be useful for rapid adaption of 

the neural network [6]. iVectors are fixed-dimensional repre-

sentations, representing the coordinates, 𝛌 of a total variability 

subspace M. In iVector estimation, the difference between the 

means of a Gaussian Mixture Model (GMM) trained on all the 

data, μ0 and speaker-specific means, 𝝁𝑠, is assumed to be the 

matrix-vector product of the total variability matrix and the re-

spective iVector: 

                      𝝁𝑠 = 𝛍0 + 𝑴𝝀𝑠                       (14) 

For adaptation, the iVectors are concatenated with the 

acoustic features, x. This produces bias adaptation of the first 

hidden layer, h: 

                   𝒉 =  σ(𝐖𝐱 + b + 𝐀𝛌),            (15) 

where σ(∙) denotes a nonlinearity, W and b are the correspond-

ing weight matrix and bias, and 𝐀𝛌 is the bias contribution 

from the iVector with weight matrix A. 

[18] used multi-condition training with neural networks to 

factorize speaker and environment information from iVectors. 

Specifically, this approach extracts bottleneck features from net-

works trained to classify either speakers or environments. The 

notion is that by learning to classify one factor, other nuisance 

factors are implicitly normalized out in the hidden representation 

since they are not relevant to classification task. 

The procedure of factorizing iVectors can be summarized 

as follows: 1) Train independent multi-condition networks for 

speaker and environment classification using normal iVectors 

exacted from training data as inputs and the corresponding 

speaker or environment classes as outputs. 2) Extract bottleneck 

features with the same size of the input iVectors. 3) Substitute 

the original iVectors in acoustic features with extracted bottle-

neck features to train a DNN acoustic model. 4) At test time, ex-

tract normal iVectors from test data and pass them to exiting clas-

sification networks for factorization. 

3. Experimental setup 

3.1. Acoustic models 

In DNN-HMM hybrid framework, an artificial neural network 

(ANN) is trained to output HMM context-dependent state-level 

probabilities [14]. The posteriors are converted into quasi-like-

lihoods by dividing by the prior of the states. 

We trained HMM-GMM acoustic models with the Kaldi 

toolkit [15] and hybrid DNN models with nnet3 package using 

WSJ corpus [16] containing 282 speakers. Specifically, we 

trained monophone and triphone models on top of 13 mel-fre-

quency cepstral coefficients (MFCCs) with delta and double 

deltas. We then trained on 40-dimensional features transformed 

with Linear Discriminant Analysis (LDA) and Maximum Like-

lihood Linear Transform (MLLT). 

We trained 6-layer time-delay feedforward neural net-

works with p-norm activations (p=2) and input and output di-

mensions set to 2000 and 250, respectively. We trained with an 
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initial learning rate set to 0.005, which was reduced exponen-

tially to a tenth of the original rate over 8 epochs. For baseline 

system, no fMLLR or iVector were used for adaptation. For 

iVector based adaptation, the iVectors were concatenated with 

the features for each frame using an iVector period of 10.  

3.2. Automatic scoring 

The confidence-based pronunciation assessment, which is de-

fined as the Goodness of Pronunciation (GOP), is often used for 

assessing speakers’ articulation and shows good results [2]. The 

GOP score is defined as follows. 

GOP(𝑝) = log (p(𝑝|𝐨))                        

                                    ≈ log
p(𝒐|𝑝)p(𝑝)

max{𝑞 ∈ 𝑄} 𝑝(𝒐|𝑞)𝑝(𝑞)
                  

                                    ≈ log
p(𝒐|𝑝)

max{𝑞 ∈ 𝑄} p(𝒐|𝑞)
                 (16) 

where p(𝑝|𝐨) is the posterior probability that the speaker ut-

tered phoneme p given speech observation 𝐨, Q is the full set 

of phonemes. The numerator of (16) is a phone likelihood that 

can be calculated through phone-level HMM forced-alignment, 

and denominator is the likelihood of the phoneme recognized 

by HMM through a phone-loop network. 

For DNN-HMM hybrid models, phone-level GOP can be 

implemented using the average frame posteriors which is the 

output of DNN [17]:  

GOP(𝑝) = p(p|𝑡𝑠, 𝑡𝑒; 𝑶) =
1

𝑡𝑒 − 𝑡𝑠
∑ p(𝑠𝑡|

𝑡𝑒

𝑡𝑠

𝒐𝑡),      (17) 

where 𝑝(𝑠𝑡|𝒐𝑡) is the frame (state-level) posterior output of 

DNN, 𝒐𝑡  is the feature observation at time t, 𝑡𝑠 and 𝑡𝑒  are 

the start and end time of phoneme p, which can be calculated 

through forced-alignment. We denote this implementation of 

GOP as GOP1. 

As mentioned in 3.1, in DNN-HMM hybrid framework, 

the state-level posteriors can be converted to quasi-likelihoods 

by dividing by the prior of the states. Therefore, we can easily 

calculate the numerator and denominator likelihoods in (16) 

through forced-alignment:     

       p(𝒐|𝑝) ≈
1

𝑡𝑒−𝑡𝑠
∑ p(𝑠𝑡|𝑡𝑒

𝑡𝑠
𝒐𝑡)/p(𝑠𝑡) ,                  (18) 

    𝑝(𝒐|𝑞) ≈
1

𝑡𝑒 − 𝑡𝑠
∑ max{𝑠𝑡

∗ ∈ 𝑆}( 𝑃(𝑠𝑡
∗|

𝑡𝑒

𝑡𝑠

𝒐𝑡)/𝑝(𝑠𝑡
∗)),   (19) 

                                                       

where S is the set of all states (or “senones”), p(𝑠𝑡) are state-

level priors calculated during DNN-HMM training. Applying 

(18) and (19) to (16), we implement another GOP score, de-

noted as GOP2. We consider GOP2 is more noise robust than 

GOP1, since the interfering factors due to acoustic mismatch 

appear in both the numerator and denominator of (16) and could 

be canceled out. 

3.3. L2 speech data 

The L2 speech data we used for our evaluation experiments are 

from recordings of reading-aloud section of Shenzhen senior 

high school English speaking tests over the period of 2014 to 

2016. As mentioned in Introduction, high school students in 

Shenzhen are required to take English speaking test twice a year, 

at the end of each school term. In the reading-aloud section of 

the test, students are required to read-aloud the transcript of a 

one minute long video. 

We selected 600 students (300 males and 300 females) 

with different levels of proficiency according to their official 

scores given by the teachers: 200 beginners, 200 intermedium 

learners and 200 advanced learners. For each speaker, there are 

4 audio files which are their recordings of reading-aloud in 4 

speaking tests at different times. Each audio file is associated 

with a label that records the speaker identity and the recording 

place (CALL classroom) ID, which can be used for speaker and 

environment labeling for adaptation. 

Since there are 4 audio files with different environment 

IDs for each speaker, we randomly selected 3 of them as train-

ing data for adaptation, and the remaining 1 audio file for testing. 

Therefore the amount of adaptation data for each speaker is 

about 3 minutes, which is a reasonable amount of data for 

fMLLR or iVector adaption compared with other studies. 

In order to evaluate the performance of automatic scoring, 

the 600 audio files in test data set were evaluated by 2 experts. 

Each expert gave an overall proficiency score from 0 (poorest) 

to 5 (highest) for each speaker. The correlation between the 

scores given by the two experts is 0.86. We used the average of 

the two expert scores for each speaker as the reference score to 

evaluate automatic scoring systems. 

3.4. Adaptation setup 

As mentioned in the previous section, there are 600 speakers in 

evaluation data. Considering 282 speakers in WSJ corpus, 𝑟𝑠 

in the equation (9) is 882. For environment variables, since the 

students were required to read aloud the transcript simultane-

ously, we considered the recordings in the same CALL class-

room at the same time as one environment. The audio files were 

recorded in 12 different classrooms at 4 different times. If we 

include the clean recording environment of training corpus WSJ, 

the number of environments 𝑟𝑒 = 12 × 4 + 1 = 49. 

For fMLLR adaptation, we constructed a global fMLLR trans-

form for each speaker using KALDI in two ways: a) supervised 

estimation with reference transcript; b) unsupervised 2-pass es-

timation with the results of baseline ASR. The reason we per-

formed unsupervised fMLLR adaptation is that there are pro-

nunciation errors in adaptation data. We used ASR results of 

adaptation data with baseline DNN-HMM model and a phone-

level bigram language model trained on transcripts instead of 

using forced-alignment of correct reference transcript. When all 

the speaker-level fMLLR transforms are estimated, we factor-

ized them into speaker and environment transform vectors as 

described in section 3.3. We then applied factorized speaker 

transforms, denoted as ffM-s, or environment transforms, de-

noted as ffM-e, to the training features and retrain the neural 

networks. To jointly compensate the speaker and environment 

variabilities, the speaker transform ffM-s estimated for a 

speaker independently of environments ( e.g. using adaption 

data of the same speaker in different environments), can be used 

in conjunction with the environment transform estimated for an 

environment independent of speaker identities. We denote this 

jointly applied transform as ffM-s+e. 

The i-vectors are obtained as typical in Kaldi. As in [18], 

a single iVector was extracted across all the data for a given 

speaker or environment. For the bottleneck features, independ-

ent multi-condition networks were trained for speaker and en-

vironment classification, where each network had 882 or 49 

output classes respectively. The networks have three 500-di-

mensional layers with the exception of middle bottleneck layers 

the size of the original iVectors. We denote factored bottleneck 

iVector features for speakers as bn-iv-s and for environments as 

bn-iv-e. We can concatenate bn-iv-s and bn-iv-e to form a new 

feature that combines speaker and environment factored bottle-

neck feature. We denote this feature as bn-iv-s+e. 
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Table 1: WER (%) results on L2 evaluation data with 

factored fMLLR adaptation and normal fMLLR. 

baseline fMLLR ffM-s ffM-e ffM-s+e 

17.27 16.24 16.35 15.50 15.33 

Table 2: WER (%) results on L2 evaluation data with 

factored iVectors adaptation and normal iVector. 

iVector bn-iv-s bn-iv-e bn-iv-s+e ffM-s+e, 

bn-iv-s+e 

16.36 16.53 16.32 15.73 14.80 

4. Experimental results and analysis 

4.1. Recognition results 

In order to evaluate the performance of the adapted models in 

speech recognition, we used utterances of 30 advanced learners 

whose scores given by the experts are the highest. The language 

model we used is a bigram model trained on all the transcripts 

of the evaluation data. Since these utterances contain very few 

pronunciation errors, we used supervised adaptation for fMLLR.  

The results of factored fMLLR adaptation are shown in Ta-

ble 1. ffM-e and ffM-s+e outperform speaker-level fMLLR. We 

consider it is because the recording environment of the test data 

of a speaker was always different than those in the training set, 

the mismatch caused by environment cannot be effectively 

compensated by the normal fMLLR. ffM-e, however, can learn 

from more data of the same environment (e.g. other students’ 

utterances recorded in the same CALL classroom). ffM-s+e 

shows the best performance further confirms the effectiveness 

of factored adaption on speech in dynamic environments.  

As shown in Table 2, iVector-based factored adaptation 

also shows the same trend: factored component of environment 

specific adaptation is more effective than normal joint iVector 

or speaker specific bn-iv-s. Combining bn-iv-s+e with ffM-s+e 

yields lowest WER, which indicates that the two factorized 

adaption techniques can work together for best performance. 

4.2. Automatic scoring results 

The correlations between automatic scores and reference scores 

with supervised and unsupervised fMLLR based factored adap-

tation are shown in Table 3 and 4. As expected, GOP2 shows 

better performance with all models than GOP1. Unsupervised 

fMLLR based models show better performances than super-

vised adaptation. This indicates that unlike in the tasks of recog-

nition where supervised adaptation generally shows better per-

formance, in the case of automatic scoring for L2 speech, unsu-

pervised 2-pass adaptation can yield better results. Similar to 

the recognition experiments, ffM-e+s shows best performances 

of other fMLLR based adapted models. 

The automatic scoring results with iVector based adapta-

tion are shown in Table 5. Although the results with iVectors 

seem slightly worse than those with fMLLR based adaptation, 

bn-iv-s+e outperforms the normal iVector, bn-iv-s and bn-iv-e 

adaptation. Combining ffM-s+e with bn-iv-s+e can further im-

prove the performance and yields the highest correlation of 0.86. 

This indicates that both iVector based and fMLLR based fac-

tored adaptations are more effective than the normal adaption 

with a single transform for all components. Combining factored 

iVectors with fMLLR factored transforms can further improve 

automatic scoring performance.  

Table 3: Correlations between automatic scores and 

reference scores with factored supervised fMLLR ad-

aptation compared with baseline (no adaption)  

scheme base-

line 

fMLLR ffM-s ffM-e ffM-

s+e 

GOP1 0.70 0.72 0.72 0.77 0.77 

GOP2 0.77 0.80 0.81 0.82 0.83 

Table 4: Correlations between automatic scores and 

reference scores with factored unsupervised fMLLR 

adaptation compared with baseline (no adaption) 

scheme base-

line 

fMLLR ffM-s ffM-e ffM-

s+e 

GOP1 0.70 0.75 0.76 0.79 0.79 

GOP2 0.77 0.80 0.82 0.83 0.85 

Table 5: Correlations between automatic scores and 

reference scores with factored iVector adaptation  

scheme iVec-

tor 

bn-iv-s bn-iv-

e 

bn-iv-

s+e 

ffM-

s+e,bn-

iv-s+e 

GOP1 0.71 0.72 0.73 0.75 0.77 

GOP2 0.77 0.79 0.80 0.82 0.86 

5. Conclusions 

We investigated the effects of factored adaptation of DNN 

acoustic models on automatic scoring of L2 speech in real 

speaking tests. Experimental results show that factorized adap-

tation techniques can utilize speaker or environment features 

more efficiently, especially in the case that involves multiple 

speakers speaking in complex environments. Combining the 

factored components of iVectors and fMLLR transforms can 

further improve robustness of DNN model in speech recogni-

tion and automatic scoring of L2 speech in dynamic environ-

ments.   

Future works include acoustic modelling of L2 speech 

with more data and exploring other adaptation or transfer learn-

ing techniques for L2 speech recognition and assessment. 
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