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Abstract 
The occurrence of hesitation events in spontaneous 
conversations can be associated with the difficulties in 
memory recall. One indicator of hesitation in speech in 
Taiwanese Mandarin is the usage of discourse markers. This 
paper introduces an approach to the detection of discourse 
markers that denote hesitation events. We propose a sequential 
labeling model to detect discourse markers in conversations by 
taking information on both acoustic level and word level into 
account. Experimental results show the integration of word-
level acoustic feature extraction network significantly 
enhances the detection performance. Our approach for further 
applications is also discussed. 
Index Terms: discourse markers detection, hesitation event, 
Mandarin spontaneous conversation 

1. Introduction 
Failing to retrieve an event in human memory frequently 
occurs in our daily life. Hesitation is a common phenomenon 
when people have difficulties in memory recall while 
speaking. Hesitation events reflect people’s feeling or attitude, 
which reveals useful information for subsequent applications. 
For instance, dialogue systems can provide more explanation 
to users sounding more uncertain, and a reminding system can 
detect users’ difficulties in memory recall and trigger the 
assistance. To analyze the “failing to recall” events, we 
propose an approach to detect discourse markers for hesitation 
events in speech. Recent study shows that the mild cognitive 
disorder, a syndrome rated to memory, can be detected from 
speech [1], which reveals the link between speech and 
memory recall processes. 

Hesitation can affect speech in several ways such as 
repetitions, false starts, filled pauses, and unfilled pauses [2]. 
Different from speech with prepared text, people think and 
talk at the same time in spontaneous speech. Therefore, the 
hesitation occurs in speech with varying speaking rate, filled 
pause, and unfilled pause [3]. The association between 
hesitation and the usages of discourse markers (DMs) are 
observed in terms of doubt expression and uncertainty in 
Taiwanese Mandarin [4] [5]. DMs allow speakers to have 
more time to think or react [6]. In Mandarin speech, discourse 
markers, which are words with their semantic meaning lost, 
are used for pragmatic purposes in conversation [7]. In 
different context, the literally same (LS) words can have 
semantic meanings and are used as content words. For 

example, in Table 1, the word 那個, tagged with [NE_GE] in 
the first utterance, is a DM, which has little semantic meaning 
and serves as a prolongation for the speaker to recall the 
following term. By contrast, the LS word in the second 
utterance serves as a determiner. In this paper, we aim to 
detect the hesitation in daily conversation by differentiating 
the discourse markers from LS content words.  

Table 1: Examples of discourse markers (DMs) and 
literally same (LS) content words.  

Type Utterance 

DM 
搭 捷運 到 那個 [NE_GE] 捷運 忠孝復興 站 

(Take the metro to [NE_GE] Zhongxiao Fuxing 
Metro Station.) 

LS 喔 為什麼 那個 不是 很 近 嗎 
(Oh why? Isn’t that close?) 

 
Prosodic information is widely used in detecting 

disfluency in spontaneous speech and improving automatic 
speech recognition (ASR) [8]. Previous work explores the 
prosody variation of disfluency events and discourse markers 
in spontaneous speech [9], and suggests that prosodic features 
could be useful information for discourse marker detection. In 
this paper, we learn hesitation-relevant acoustic features from 
various types of acoustic features related to speech 
recognition, prosody, and emotion recognition. Furthermore, 
we propose a weight filtering method to learn word-level 
hesitation-relevant acoustic features from frame-wise features, 
which effectively enhance the performance of discourse 
marker detection. Our model is evaluated on Sinica Mandarin 
Conversational Dialogue Corpus (MCDC8). In the setting 
where the transcript is recognized manually, our model 
achieves a precision of 82.87%. In the fully automatic setting, 
where the transcript is performed by an ASR service, our 
model also achieves a high precision of 79.00%. That 
confirms the feasibility of our approach on practical 
applications.  

2. Methods 
Our model addresses the task of discourse marker detection 
from lexical aspect and acoustic aspect. Word-based features 
and acoustic features are used in two kinds of networks, 
respectively. We combine features learned from two networks 
to enhance the robustness of the final model. Figure 1 shows 
the architecture of our discourse marker detection model. 
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Three major components include hesitation-relevant feature 
extraction network, word sequence labeling network, and the 
feature combination network for the two aforementioned 
networks. The first two components and the overall system 
will be evaluated individually in Section 4.  

 
Figure 1: Architecture of discourse marker detection model. 

2.1. Word Sequence Labeling Network 

Word sequence labeling network is shown in the right part in 
Figure 1. We regard discourse marker detection as a sequence 
labeling task that labels the words served as DM in a transcript. 
The recurrent neural network (RNN), bidirectional Gated 
Recurrent Unit (Bi-GRU), and bidirectional Long Short-Term 
Memory (Bi-LSTM) models are adopted for the task of 
sequential labeling. 

GRU and LSTM show their capacity in modeling long-
term dependencies among time steps that is suitable for 
sequential data like sentences and speech. In contrast to LSTM, 
GRU is equipped with fewer gates so that it is usually more 
efficient in training. Bi-GRU and Bi-LSTM learn input 
features in both directions. At each time step, the prediction is 
based on the information from both preceding and successive 
states. This is especially useful for our task since we usually 
need to read the upcoming words to determine if a word is a 
discourse marker. Bi-LSTM is also used in disfluency 
detection [10] and grammatical error detection [11]. Its ability 
to capture special patterns in text is suitable for this task. 

We train Bi-GRU and Bi-LSTM with randomly initialized 
word embedding as the input layer. The output vectors from 
two directions are concatenated for prediction or for feature 
combination. 

2.2. Hesitation-Relevant Acoustic Feature Extraction 

The hesitation-relevant acoustic feature extraction network is 
shown in the left part in Figure 1. Both convolutional neural 
network (CNN) and multi-layer perceptron (MLP) models are 
tested as the internal neural network. We propose a weight 

filtering method to combine frame-wise features extracted 
from CNN or MLP into word-level hesitation-relevant 
acoustic features.  

2.2.1. ComParE Feature Set 

We use Computational Paralinguistics Evaluation (ComParE) 
feature set as the input features for our hesitation-relevant 
acoustic feature extraction network. ComParE is the baseline 
acoustic feature set designed for 2013 INTERSPEECH 
Computational Paralinguistics Challenge [12]. This feature set 
is also used in filler events detection [13]. The ComParE 
feature set is extracted by openSMILE tool and includes 141 
features such as Mel-Spectrum, Mel-Frequency Cepstral 
Coefficients (MFCC), energy, zero-crossing rate, and pitch 
(F0). These features are frame-wise, and we set frame length 
as 25 microseconds and frame rate as 10 microseconds. 

2.2.2. Convolutional Neural Network 

CNN is successfully used in some tasks in speech such as 
phoneme recognition [14] and emotion recognition [15]. Its 
local connectivity and weight sharing property allow CNN to 
exploit the spatial information of signal data. In our model, 
CNN is employed on ComParE features with one stride. We 
flatten the output tensors on frame dimension and then pass all 
vectors to a fully connected layer to obtain the frame-wise 
feature vectors. 

2.2.3. Multi-Layer Perceptron 

MLP is widely adopted in phoneme posterior estimation for 
ASR. Prior research has also shown the success of MLP on 
detecting laughter and filler events [13]. In our model, MLP is 
employed on each frame. Frame-level features of a frame and 
its neighboring frames in the sliding window are fed into an  
MLP with 2 hidden layers. 

2.2.4. Frame-Level Features to Word-Level Features 

This method learns hesitation-relevant acoustic features for 
each word from frame-level feature vectors. After frame-wise 
features are extracted by CNN or MLP, we merge frame-wise 
feature vectors into word-level feature vectors by applying a 
weight filter. The weights for each word are learned from all 
the frame-level feature vectors in the time span of the word. 
The weights are computed by the procedure as follows. 

For each word 𝑤" , the system refers to the forced 
alignment result and gets the time span of 𝑤". We define the 
maximum frame sequence length as T and write the time span 
of 𝑤" as 𝑠". The symbol 𝑠" denotes a vector of length T. 𝑠",% =
1 when time t is within the time span of 𝑤", and otherwise 
𝑠",% = 0. Next, the model computes the weight 𝑢",% for each 
frame-wise feature vector 𝑓% with the formula as follows.  

𝑢",% = 𝑣, tanh(𝑊𝑓% + 𝑏) (1) 
, where 𝑊,𝑏, 𝑣 are the parameters to learn by the model. Then, 
we apply the time span mask 𝑠" to zero out frame vectors lying 
outside the time span, i.e., 𝑠",% = 0. A softmax function is 
applied to let all weights sum to 1. The frame weights are 
computed with the formula as follows.  

𝑎",% =
exp:𝑠",%	𝑢",%<

∑ 𝑒𝑥𝑝:𝑠",A	𝑢",A<,
ABC

 (2) 

Finally, the word-level features vector 𝑐"  of word 𝑤"  is the 
weighted sum of frame-level feature vectors. 
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𝑐" =E𝑎",% 	𝑓%
,

%BC

 (3) 

The word-level acoustic feature vectors are used for 
prediction or for feature combination. 

2.3. Network Combination 

Word features and word-level acoustic features are 
concatenated and passed to a fully connected layer with a 
rectifier to learn feature combination. Finally, the model 
performs binary prediction on each word with the combined 
feature. Word sequence labeling network converges much 
faster than hesitation-relevant feature extraction network does. 
Thus, we pre-train these two networks separately and train the 
whole model after then. The loss function is cross entropy. 
Parameters are trained with 10-fold cross-validation. 

3. Experimental Setup  

3.1. Mandarin Conversational Dialogue Corpus 

The Sinica Mandarin Conversational Dialogue Corpus 
(MCDC8) is adopted as the dataset [5]. This corpus consists of 
eight sets of conversation. Two speakers participated in each 
conversation. We choose MCDC8 for our task since the 
conversational data collected in this dataset match our daily 
life scenario. This corpus is aimed at collecting conversational 
data that approximates to daily conversation. Speakers can 
choose and change arbitrary topics during their conversation. 

The conversations in MCDC8 are manually transcribed by 
professional annotators. Special events and word types such as 
laughter, long pauses, fillers, particles, and discourse markers 
are also labeled. Table 2 lists the DMs labeled in MCDC8. 
The LS content words that each DM corresponds to are shown 
in the right side. The audio sequences are labeled with Inter-
Pausing Unit (IPU), and each IPU is segmented into intervals. 
We use interval as the unit of utterance. There are 15,901 
utterances and 93,317 words in total, where 2,000 utterances 
are used for test and 10% of the rest data are used for 
validation. 

Table 2: DMs and the corresponding LS content 
words in MCDC8. 

DM # LS # 
NA 911 

那 1094 NE 148 
NEI 79 
NA_GE 139 

那個 316 NE_GE 237 
NEI_GE 29 
SHE_ME 2 

什麼 350 SHEN_ME 116 
ZHE_GE 69 這個 219 ZHEI_GE 1 

3.2. Evaluation 

We first show the performance of our model without the error 
produced by ASR, i.e., the golden transcripts are given.  

Our model is evaluated with precision (P), recall (R), and 
F-score (F1). For a memory recall assisting system, precision 
is more important than recall since users’ conversation would 
not be interrupted by a lot of false alarm notifications. 

3.3. Evaluation on ASR Results 

To test if our system can be completely automatic without the 
efforts of human transcription, we further evaluate our models 
on ASR results. The ASR service, iFLYTECH,1 is adopted for 
machine transcribing. The word error rate (WER) of 
iFLYTECH is 35.15%. 

Our model relies on both acoustic and transcript 
information. In this case, the transcript, however, is based on 
the output of an ASR system where wrong recognition may 
occur. In general, there are three types of wrong ASR 
outcomes: substitution, deletion, and insertion. The ASR 
system does not always recognize the target words correctly. 
In this paper, we propose two strategies to deal with this issue. 

3.3.1. Strict Strategy 

In the strict strategy, substitution and deletion errors occurring 
on discourse markers are directly counted as prediction error. 
In other words, wrongly recognized words are regarded as 
non-discourse-marker. Only the correctly recognized target 
words are further checked if the prediction for them is correct. 

3.3.2. Lenient Strategy 

It is common that the ASR system confuses the target word 
with other words with similar sounds. Even if target words are 
wrongly recognized, it is still possible for the system to predict 
from their acoustic information or the surrounding words. In 
the lenient strategy, all predictions are checked if they are 
correct.  

4. Results and Discussions 
Table 3 shows the performance of our models for discourse 
marker detection on golden transcripts (GT). The baseline 
model, which is a rule-based one, selects all the words in GT 
with the lexical forms of DMs. That is, DMs and LS content 
words are all predicted as DMs. The precision of CNN and 
MLP is slightly higher than that of the baseline model. Bi-
GRU word sequence labeling network outperforms the 
baseline model and Bi-LSTM. 

CNN+Bi-GRU and MLP+Bi-GRU significantly enhance 
Bi-GRU in terms of precision and F-score. That demonstrates 
feature vectors learned from our hesitation-relevant acoustic 
feature extraction network effectively improves the 
predictions. The recall of the Bi-GRU model is higher than 
that of the MLP+Bi-GRU model. The reason is that Bi-GRU 
tends to predict the word as DM when seeing LS because Bi-
GRU only depends on transcript information. 

Table 3: Results of discourse marker detection with GT. 

Feature Model  P R F1 
Text Baseline 0.5021 1.0000 0.6685 

Acoustic CNN 0.5824 0.4849 0.5292 
MLP 0.5598 0.5622 0.5610 

Text Bi-LSTM 0.7133 0.9613 0.8190 
Bi-GRU 0.7174 0.9699 0.8248 

Text and 
Acoustic 

CNN+Bi-GRU 0.7620 0.9484 0.8451 
MLP+Bi-GRU 0.8287 0.9141 0.8693 

                                                
 
1 http://www.xfyun.cn 
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In Table 4, we only evaluate on DMs and LS content 
words to examine if our models can differentiate them. The 
precision achieved by MLP is better than that achieved by the 
two models without acoustic information. In addition, Table 5 
shows that MLP is good at predicting LS content words, better 
than Bi-GRU and MLP+Bi-GRU. This result implies MLP is 
good at differentiating DMs from LS content words based on 
acoustic information. In other words, the strength of MLP 
complements Bi-GRU so that the combination of MLP and Bi-
GRU enhances the overall performance. 

Table 4: Results on DMs and LS content words. 

Feature Model  P R F1 
Text Baseline 0.5021 1.0000 0.6685 

Acoustic CNN 0.7533 0.4849 0.5900 
MLP 0.7844 0.5622 0.6550 

Text Bi-LSTM 0.7179 0.9613 0.8220 
Bi-GRU 0.7313 0.9699 0.8339 

Text and 
Acoustic 

CNN+Bi-GRU 0.7727 0.9484 0.8516 
MLP+Bi-GRU 0.8320 0.9141 0.8711 

Table 5: Recall on DMs and LS content words. 

 DM LS 
MLP 0.5622 0.8441 
Bi-GRU 0.9699 0.6406 
MLP+Bi-GRU 0.9141 0.1861 

 
We perform McNemar’s statistical significance test on 

two combination networks and Bi-GRU respectively. No 
matter which MLP or CNN is used, the addition of acoustic 
features extraction network significantly enhances the 
performance (𝑝 < 0.001 and 𝑝 < 0.05). In Table 3 and Table 
4, the recall achieved by CNN+Bi-GRU is higher than that by 
MLP+Bi-GRU. Its characteristic is probably different from 
MLP+Bi-GRU, so we also perform significance test on 
MLP+Bi-GRU and CNN+Bi-GRU. The p-value shows that 
these two models are significantly different (𝑝 < 0.02). If the 
system is used for recall assistance, MLP+Bi-GRU is the 
better choice due to the lower rate of false alarms. If we use 
the system for study purposes, CNN+Bi-GRU are 
recommended for capturing as much events as possible. 

Table 6: Recall of MLP+Bi-GRU on different DMs.  

DM Recall 
NA 0.9821 
NE 1.0000 
NEI 1.0000 
NA_GE 0.9047 
NE_GE 0.7894 
NEI_GE 0.8333 
SHEN_ME 0.8333 
ZHE_GE 0.5454 

 
Table 6 shows the result for each DM detected by the 

MLP+Bi-GRU model. The discourse markers NE_GE and 
ZHE_GE are most difficult to detect. We further evaluate the 
detection results under the fully automatic condition. Table 7 
shows the results of our model with the strict strategy. The 
performance drops drastically on all models, especially for 
recall. The recall achieved by the baseline model shows that 
only 40.77% of DMs are recognized by ASR. The models 

with only transcript information are highly affected by the 
errors of ASR. On the other hand, MLP+Bi-GRU can still 
achieve a precision of 79.00%, very close to the precision 
82.87% achieved by the same model given golden transcripts 
in spite of the 35.15% WER of the ASR service. 

Table 7: Detection performance using ASR results with the 
strict strategy. 

Feature Model  P R F1 
Text Baseline 0.4545 0.4077 0.3613 

Acoustic CNN 0.6590 0.2489 0.3613 
MLP 0.5688 0.2660 0.3625 

Text Bi-LSTM 0.6854 0.3648 0.4761 
Bi-GRU 0.6800 0.3648 0.4748 

Text and 
Acoustic 

CNN+Bi-GRU 0.7166 0.3690 0.4872 
MLP+Bi-GRU 0.7900 0.3390 0.4744 

 
Table 8 shows the results under fully automatic condition 

using the lenient strategy. The recall is expected to increase. 
However, the noise made by ASR has a strong impact on 
precision. For the text prediction model, the increase on recall 
is limited. Nonetheless, the recalls of both models with only 
acoustic features significantly increase. That verifies the 
capacity of our feature extraction network for learning 
hesitation-relevant features. The McNemar’s test on the ASR 
results with the lenient strategy also confirms the capacity of 
acoustic feature extraction network to improve the 
performance (𝑝 < 0.02). 

Table 8: Detection performance using ASR results with the 
lenient strategy. 

Feature Model  P R F1 
Text Baseline 0.4545 0.4077 0.3613 

Acoustic CNN 0.5606 0.3175 0.4054 
MLP 0.4857 0.3648 0.4166 

Text Bi-LSTM 0.5056 0.3862 0.4379 
Bi-GRU 0.5084 0.3862 0.4390 

Text and 
Acoustic 

CNN+Bi-GRU 0.5443 0.3948 0.4577 
MLP+Bi-GRU 0.5931 0.3690 0.4550 

5. Conclusions 
We propose an approach to discourse marker detection in 
Mandarin conversation for hesitation events using both word 
features and acoustic features. The experiments show that our 
method successfully extracts hesitation-relevant information 
from audio sequence. We explore the complementary 
characteristics of the acoustic features and the transcript 
features, and confirm the combination of acoustic and 
transcript information significantly enhances the overall 
performance. Our model achieves a precision of 0.79 under 
the fully automatic condition. That shows its feasibility for 
subsequent applications such as memory recall assistance. 
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