
Fast variational Bayes for heavy-tailed PLDA applied to i-vectors and x-vectors

Anna Silnova1, Niko Brümmer2, Daniel Garcia-Romero3, David Snyder3, and Lukáš Burget1

1Brno University of Technology, Czech Republic
2Nuance Communications, South Africa

3Johns Hopkins HLTCOE, USA
{isilnova,burget}@fit.vutbr.za, niko.brummer@gmail.com, dgromero@jhu.edu

Abstract
The standard state-of-the-art backend for text-independent
speaker recognizers that use i-vectors or x-vectors, is Gaus-
sian PLDA (G-PLDA), assisted by a Gaussianization step in-
volving length normalization. G-PLDA can be trained with
both generative or discriminative methods. It has long been
known that heavy-tailed PLDA (HT-PLDA), applied without
length normalization, gives similar accuracy, but at consider-
able extra computational cost. We have recently introduced a
fast scoring algorithm for a discriminatively trained HT-PLDA
backend. This paper extends that work by introducing a fast,
variational Bayes, generative training algorithm. We compare
old and new backends, with and without length-normalization,
with i-vectors and x-vectors, on SRE’10, SRE’16 and SITW.
Index Terms: speaker recognition, variational Bayes, heavy-
tailed PLDA

1. Introduction
We extend our previous work in [1], where we did discrimi-
native training of a heavy-tailed PLDA model (HT-PLDA), ap-
plied to i-vectors. In this paper, we explore instead a generative
training solution and we apply it to both i-vectors [2] and x-
vectors [3]. The advantage of the generative training is that it is
orders of magnitude faster than the discriminative one.

In [4] HT-PLDA was shown to be a better model of i-
vectors than Gaussian PLDA (G-PLDA), but the computa-
tional cost was considerable. Subsequently, [5] showed that
the i-vectors could instead be Gaussianized via a simple length
normalization procedure. This matched the accuracy of HT-
PLDA, with negligible extra computational cost and estab-
lished G-PLDA with length-normalization as the standard back-
end for scoring text-independent i-vector speaker recogniz-
ers. Recently, the same scoring recipe was applied also to x-
vectors [3, 6, 7].

In this paper, we revisit HT-PLDA, using a slightly simpli-
fied model for which we present fast training and scoring al-
gorithms, with speed comparable to G-PLDA. The HT-PLDA
model can be applied without length normalization. We demon-
strate accuracy gains on some data sets, including EER=2.7%
on SITW and EER=3.2% on SRE’16 Cantonese. Since we have
effectively removed the computational impediment, we encour-
age other researchers to experiment with this backend as an al-
ternative. We make open source code available to facilitate such
experiments.

2. HT-PLDA model
The generative HT-PLDA model is shown in graphical model
notation [8] in figure 1 and is defined as follows. For ev-
ery speaker, i, let all of the available observations of that

speaker (Ni of them) be denoted as Ri = {rij}Ni
j=1, where

the rij ∈ RD are i-vectors, or x-vectors, of dimension D. For
every speaker, a hidden speaker identity variable, zi ∈ Rd, is
drawn i.i.d. from the standard d-dimensional normal distribu-
tion. We require d� D. The heavy-tailed behavior is obtained
by drawing for every observation a hidden precision scaling fac-
tor, λij > 0, from a gamma distribution, G(α, β) parametrized
by α = β = ν

2
> 0. The parameter ν is known as the de-

grees of freedom [4, 8]. Finally, given the hidden variables, the
observations are drawn i.i.d. from the multivariate normal:

P (rij | zi, λij) = N
(
rij | Fzi, (λijW)−1) (1)

where F is theD-by-d, factor loading matrix and where W is a
D-by-D positive definite precision matrix. The model parame-
ters are ν,F,W. This model is a simplification of Kenny’s HT-
PLDA model [4], which also had heavy-tailed speaker identity
variables.

rijzi λij

νF,W

j = 1 · · ·Ni

i

Figure 1: Heavy-tailed PLDA

This model does not allow closed-form scoring or training.
Either the hidden scaling factors, or the hidden speaker identity
variables can be integrated out in closed form, but not both. This
means that we have to find approximations for both scoring and
training. We make use of a new approximation, the Gaussian
likelihood approximation, as recently published in [1]. In that
paper, the approximation was used for both scoring and discrim-
inative training. In this paper, we apply the same approximation
also for generative training.

2.1. The Gaussian likelihood approximation

Both scoring and training recipes can be built around the likeli-
hood for the hidden speaker identity variable, given the obser-
vation. Marginalization over the hidden variable, λij , gives a
multivariate t-distribution for the observed vector [8, 9, 1]:

P (rij | zi) = T (rij | Fzi,W, ν) (2)

This is a t-distribution for rij , but to use this as likelihood for
zi, we need to view it as function of zi. Provided that D > d
and F′WF is invertible, it is shown in [9] that this function is

Interspeech 2018
2-6 September 2018, Hyderabad

72 10.21437/Interspeech.2018-2128

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/2128.html

proportional to another t-distribution, with increased degrees of
freedom, ν′ = ν +D − d:

P (rij | zi) ∝ T (z | ẑij ,Bij , ν
′) (3)

where

ẑij = B−1
ij aij Bij = bijB0, (4)

aij = bijF
′Wrij , bij =

ν +D − d
ν + r′ijGrij

, (5)

B0 = F′WF, G = W −WFB−1
0 F′W (6)

In a typical PLDA model, we have d ∈ [100, 200] and D ∈
[400, 600], so that ν′ = ν+D−d is large, making the likelihood
practically Gaussian. We therefore approximate the speaker
identity likelihood as:

P (rij | z) ≈ exp
[
a′ijz−

1

2
z′Bijz

]
∝ N (z | ẑij ,B−1

ij) (7)

Notice that for the heavy-tailed case, with small ν, the like-
lihood precisions are variable, while in the Gaussian limit, at
ν → ∞, we have bij = 1 and constant precisions. The preci-
sion variability is driven by r′ijGrij , where G is a projection
operator onto the orthogonal complement of the speaker sub-
space1—with the inner product defined by the positive definite
precision matrix [10].

2.2. Scoring

Since the precisions of all likelihoods extracted by this model
differ only by a scale factor, bij , they can be jointly diagonal-
ized, to give fast scoring of speaker verification trials as ex-
plained in more detail in [1, 9].

2.3. Mean-field VB training

The hidden variables associated with speaker i are zi and λi =
{λij}Ni

j=1. These hidden variables are dependent in the true
joint posterior, P (zi,λi | Ri) and this posterior does not have
a closed form. We follow [4] and use mean-field variational
Bayes (VB) [8] that makes use of an approximate, factorized
posterior of the form:

Qi(λ, z) = Qi(λ)Qi(z) ≈ P (z,λ | Ri) (8)

Given this factorization, the VB lower bound is formed as:

L =
∑

i

〈
log

P (Ri, z,λ | θ)
Qi(z)Qi(λ)

〉

Qi(z)Qi(λ)

(9)

where the model parameters are θ = (F,W, ν); and where
L ≤ P (R | θ), the true marginal likelihood. Training is done
by maximizing L w.r.t. both θ and the Q-factors, to give an
approximation to argmaxθ P (R | θ).

In the traditional mean-field VB recipe, L is optimized it-
eratively, doing partial maximizations w.r.t. θ, the Qi(λ) and
the Qi(z) in round-robin fashion. The Q-factor optimizations
are variational, rather than parametric. The forms of the optimal
Q-factors can be derived in closed form: multivariate Gaussian
for Qi(z); and product of independent gamma distributions for
Qi(λ). But for every i, the parameters of these distributions
have to be iteratively computed. This makes the traditional

1GF = 0

recipe slow. To get a fast alternative, we choose a closed form
for the one Q-factor:

Qi(λi) =

Ni∏

j=1

G
(
λij | ν +D − d

2
,
ν + r′ijGrij

2

)
(10)

This is different from the optimal mean-field factor, but this
choice is made such that the expected values,

〈
λij
〉

equal the
bij in (5). Given (10), we can now apply the standard mean-
field solution [8]:

logQi(z) =
〈
logP (Ri, z | λ)

〉
Qi(λ)

+ const (11)

to also find the other Q-factor in closed form:

Qi(z) ∝ P (z)

Ni∏

j=1

N (z | ẑij ,B−1
ij) ∝ N (z | z̄i, B̄−1

i) (12)

where P (z) = N (z | 0, I) and

z̄i = B̄−1
i

Ni∑

j=1

aij , B̄i = I +

Ni∑

j=1

Bij (13)

This solution agrees with the Gaussian likelihood approxima-
tion in the following sense. Notice that the true posterior for zi
can be expressed as:

P (z | Ri) ∝ P (z)
∏

j

P (rij | z) (14)

If we replace the above t-distribution likelihoods, P (rij | z),
with the Gaussian approximations in (7), then we also arrive
at (12).

Our learning algorithm proceeds as follows. Fix ν to some
chosen value and randomly initialize F,W. Then iterate:

E-step: Assign the Qi(λ) and Qi(z) using (10) and (12).

M-step: Maximize (9) w.r.t. F,W.

All of the above steps have closed forms and the resulting op-
timization algorithm proceeds very similarly to the usual EM-
algorithm for training Gaussian PLDA [11]. The only differ-
ence is that the zero, first and second-order stats in the new al-
gorithm are weighted by the scaling factors, bij . As in [11],
we augment the M-step with minimum divergence [12] on the
hidden variable prior P (z). We also do minimum divergence
on the hidden scale factors, as explained in Example 2.6: Multi-
variate t-distribution with known degrees of freedom, in [13].
The minimum divergence augmentations lead to much faster
convergence and a well-calibrated end-result. Again, the pos-
terior precisions, B̄i, are mutually diagonalizable, requiring but
a single eigenanalysis of B0 per iteration.

An open-source implementation of the training
and scoring algorithms for this model is available at
github.com/bsxfan/meta-embeddings/tree/
master/code/Niko/matlab/clean/VB4HTPLDA.

3. Experiments
3.1. HT-PLDA for i-vectors

3.1.1. Experimental setup

We continue our experiments with HT-PLDA modeling of i-
vectors started in [1]. Here, we keep the same experimental
setup except for a few minor differences mentioned below.

73

As before, spectral features are 60-dimensional MFCCs
with short-term mean and variance normalization applied over
a 3 second sliding window. The UBM is gender independent
and has 2048 diagonal components. The i-vectors are of di-
mension D = 600. We applied global mean normalization
to these i-vectors (because our HT-PLDA model does not have
a mean parameter). The G-PLDA backend was applied to i-
vectors both with and without length normalization (LN). All
HT-PLDA backends were applied to i-vectors without LN.

UBM, i-vector extractor and both Gaussian and heavy-
tailed PLDAs are trained on the PRISM dataset [14], contain-
ing Fisher parts 1 and 2, Switchboard 2, 3 and Switchboard
cellphone phases. Also, NIST SRE 2004–2008 (also known
as MIXER collections) are added to the training. In total, the
set contains approximately 100K utterances coming from 16241
speakers. We used 8000 randomly selected files for UBM train-
ing and the full set to train the i-vector extractor. When train-
ing PLDA models, we filter out all speakers having less than 6
utterances, resulting in just 3429 speakers and 73306 training
utterances.

We evaluate performance on the female part of NIST
SRE’10, condition 5, which consists of English telephone data
[15]. Additionally, we report the results on the NIST SRE’16
evaluation set (both males and females). We report the results
on the whole evaluation set as well as on two language sub-
sets, Cantonese and Tagalog. As evaluation metrics, we use the
equal error rate (EER, in %) as well as the average minimum
detection cost function for two operating points of interest in
the NIST SRE’16 [16] (CPrm

min).

3.1.2. Experiments and results

Our i-vector experiments, comparing traditional G-PLDA with
discriminatively and generatively trained HT-PLDA are shown
in table 1. The speaker subspace dimensionality is d = 200.
The first two lines show the G-PLDA baseline, with and with-
out length normalization. As expected, length normalization
helps to shape the distribution of i-vectors to better fit Gaussian
assumptions made by G-PLDA. Consequently, the performance
of G-PLDA is significantly worse when no length normalization
is applied.

The third and fourth lines repeat our experiments from [1].
Line 3 shows HT-PLDA with ν = 2 and with F,W simply
initialized from G-PLDA.2 Line 4 shows the same model af-
ter additional discriminative training with binary cross-entropy
(BXE). In both cases no length normalization was applied. In
the absence of LN, introducing the heavy-tailed mechanism
at test time (line 3) is able to significantly improve the per-
formance (compared to line 2), even without further training.
Discriminatively trained HT-PLDA, without length norm (line
4) does best and surpasses the performance of G-PLDA with
length normalization (line 1).

The last two lines of table 1 present results for generative
VB training of HT-PLDA as described in section 2.3. In line
5, training was done with ν → ∞ and testing with ν = 2. In
line 6, both training and testing had ν = 2. Ideally, lines 5 and
3 should be identical, but due to details of the respective EM
and VB algorithms, small differences remain, possibly because
the algorithms were stopped before fully converged. Although
the VB trained HT-PLDA variants (lines 5, 6) do better than
G-PLDA baseline without LN (line 2), it does not manage to
improve the performance of G-PLDA with LN (line 1), nor of

2HT-PLDA with ν →∞ is equivalent to G-PLDA.

the discriminatively trained HT-PLDA (line 4).

3.2. HT-PLDA for x-vectors

3.2.1. x-vector extractor

The x-vector system is a modified version of the DNN in [6].
The features are 23 dimensional MFCCs with a frame-length of
25ms, mean-normalized over a sliding window of up to 3 sec-
onds. An energy SAD is used to filter out nonspeech frames.
The first few layers of the x-vector extractor operate on se-
quences of frames. They are a hierarchy of convolutional layers
(only convolving in time) that provide a long temporal context
(23 frames, 11 to each side of the center frame) with reduced
complexity. Their outputs are processed by fully connected lay-
ers and followed by a statistics pooling layer that aggregates
across time by computing the mean and standard deviation.
This process aggregates information so that subsequent layers
operate on the entire segment. The mean and standard devia-
tion are concatenated together and propagated through segment-
level layers and finally the softmax output layer. The nonlinear-
ities are all rectified linear units (ReLUs).

The DNN is trained to classify the N speakers in the train-
ing data. A training example consists of a chunk of speech fea-
tures (about 3 seconds average), and the corresponding speaker
label. After training, x-vectors (512 dimension) are extracted
from the affine layer immediately after the pooling layer.

The software framework has been made available in the
Kaldi toolkit. An example recipe is in the main branch of Kaldi
at https://github.com/kaldi-asr/kaldi/tree/
master/egs/sre16/v2 and a pretrained x-vector sys-
tem can be downloaded from http://kaldi-asr.org/
models.html.

3.2.2. Experimental setup

The DNN training data consists of both telephone and micro-
phone speech (mostly English). All wideband audio is down-
sampled to 8kHz. We pooled data from Switchboard, Fisher,
Mixer (SRE 2004-2010), and VoxCeleb3 [17] datasets yielding
approximately 175K recordings from 15K speakers. Addition-
ally, the recordings were augmented (using noise, reverb, and
music) to produce 450K examples. From this augmented set,
15K chunks of 2 to 4 seconds were extracted for each speaker
to form minibatches (64 chunks). We sampled equally for each
speaker (i.e., balanced the training data per speaker) and trained
for 3 epochs.

The G-PLDA and HT-PLDA classifiers are trained on a sub-
set of the augmented data (we removed Switchboard and Fisher
data) comprising 7K speakers and 230K recordings. For all ex-
periments, we use a speaker subspace of dimension d = 150.
To explore the effects of LN on x-vectors we present results with
and without it. More precisely, although LN comprises multi-
ple steps (center, whitening, and projection onto unit-sphere)
we use the notation “no LN” to refer to the lack of projection.
We always center and whiten the data. Finally, the scores are
normalized using adaptive symmetric score normalization (ass-
norm) [18].

We report results on SITW core-core condition [19] and the
Cantonese subset of NIST SRE’16 [16] to characterize the sys-
tem behavior under microphone and telephone recording condi-
tions. Each of these sets provides development data that we use
for centering the evaluation data and computing ass-norm. The

3We removed the 60 speakers that overlap with SITW since we eval-
uate on it.

74

Table 1: Comparison of error-rates on SRE’10 and ’16 of Gaussian PLDA with length normalization and without it, versus discrimina-
tively and generatively trained heavy-tailed PLDA (without length normalization) using i-vectors. The performance metrics are CPrm

min ,
and EER(%)

System SRE10 c05,f SRE16, all SRE16, Cantonese SRE16, Tagalog

CPrm
min EER CPrm

min EER CPrm
min EER CPrm

min EER

G-PLDA, LN 0.26 2.5 0.97 16.5 0.68 9.7 0.99 21.0
G-PLDA, no LN 0.33 4.0 0.97 17.8 0.69 11.5 0.98 21.3

HT-PLDA ν = 2, initialized from G-PLDA 0.30 2.9 0.96 16.7 0.68 10.0 0.98 21.1
HT-PLDA ν = 2, trained with BXE 0.21 2.1 0.90 15.1 0.74 9.3 0.97 20.2

HT-PLDA, train ν =∞, test ν = 2 0.30 2.7 0.97 16.7 0.68 10.0 0.98 21.2
HT-PLDA, train ν = 2, test ν = 2 0.31 3.2 0.97 16.9 0.69 10.4 0.99 21.3

Table 2: G-PLDA vs generatively trained HT-PLDA on eval
part of SITW core-core using x-vectors.

System minDCF0.01 EER

G-PLDA, LN 0.34 3.3
G-PLDA, no LN 0.34 3.4

HT-PLDA, ν = 2, LN 0.34 3.4
HT-PLDA, ν = 2, no LN 0.33 2.7

PLDA training set is always centered to its own mean and used
to estimate the whitening transform. Note that this transforma-
tion does not have any impact if no projection is applied to the x-
vectors. Additionally, for the SRE’16 set, we also show results
applying unsupervised domain adaptation [20] of the PLDA pa-
rameters.

3.2.3. Results

The x-vector results are presented in tables 2 and 3. To the best
of our knowledge, these are the best numbers published on both
tasks. Moreover, the HT-PLDA classifier with no LN outper-
forms G-PLDA (even with domain adaptation for SRE’16). It
is interesting to note that LN is detrimental to the HT-PLDA
performance. Recall that the precision scaling factors bij in (5)
are determined by r′ijGrij , the energy of the x-vectors in the
complement of the speaker subspace. This results in scaling
factors that get smaller as the energy of the x-vectors outside
of the speaker subspace grows (which is consistent with the
phenomenon that our model is trying to capture). Therefore,
projecting the x-vector onto the unit sphere interferes with this
process and the results indicate that it is detrimental. The G-
PLDA classifier seems suboptimal for these tasks, but still ben-
efits from LN. This is more noticeable for the SRE’16 results
than for SITW where LN does not seem to have much effect.
This is an indication that x-vectors behave differently than i-
vectors in this regard and requires further investigation. Finally,
unsupervised domain adaptation using parameter interpolation
works quite well for both G-PLDA and the HT-PLDA model.

4. Discussion
In this paper and in our previous work [1], we revisit heavy-
tailed PLDA and re-engineer it to provide a computationally at-
tractive alternative to the existing state of the art given by Gaus-

Table 3: G-PLDA vs generatively trained HT-PLDA (with and
without adaptation) on SRE’16 Cantonese using x-vectors. The
performance metrics are balanced CPrm

min , as computed by NIST
scoring tool, minDCF0.01and EER(%)

System CPrm
min (bal.) minDCF0.01 EER

G-PLDA, LN 0.30 0.31 4.5
G-PLDA, no LN 0.33 0.32 4.7
HT-PLDA, ν = 2, LN 0.31 0.31 4.5
HT-PLDA, ν = 2, no LN 0.30 0.30 3.8

+ unsupervised adaptation

G-PLDA, LN 0.27 0.27 3.9
G-PLDA, no LN 0.29 0.28 4.3
HT-PLDA, ν = 2, LN 0.27 0.28 4.2
HT-PLDA, ν = 2, no LN 0.25 0.26 3.2

sian PLDA with length normalization. Our experiments show
benefits to HT-PLDA on both i-vectors and x-vectors on three
different evaluation sets. In the case of i-vectors, discriminative
training worked better than generative training. In the case of x-
vectors, only generative training was tried to date, and this gave
record performance on SRE’16 and SITW.

In future work, we plan to try discriminative training for
the HT-PLDA backend also on x-vectors. After that, we want
to backpropagate the discriminative training, through this back-
end and also into the x-vector extractor. The idea is that the
variable precisions of HT-PLDA should serve as a vehicle for
uncertainty propagation from the input MFCCs to the output
scores, as more fully motivated in [1, 9].

5. Acknowledgements

This work was started at the Johns Hopkins University HLT-
COE SCALE 2017 Workshop. The authors thank the workshop
organizers for inviting us to attend and (in the case of Niko
Brümmer) for generous travel funding. The work was sup-
ported by Technology Agency of the Czech Republic project
No. TJ01000208 ”NOSICI”, and by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme of Sus-
tainability (NPU II) project ”IT4Innovations excellence in sci-
ence - LQ1602”.

75

6. References
[1] N. Brümmer, A. Silnova, L. Burget, and T. Stafylakis, “Gaussian

meta-embeddings for efficient scoring of a heavy-tailed plda
model,” in Odyssey: The Speaker and Language Recognition
Workshop, Les Sables d’Olonne, 2018. [Online]. Available:
arxiv.org/abs/1802.09777

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech and Language Processing, vol. 19, no. 4,
pp. 788–798, May 2011.

[3] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification,” in Interspeech, Stockholm, 2017.

[4] P. Kenny, “Bayesian speaker verification with heavy-tailed pri-
ors,” in Odyssey Speaker and Language Recognition Workshop,
Brno, Czech Republic, June 2010, keynote presentation.

[5] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector
length normalization in speaker recognition systems,” in Inter-
speech, Florence, Italy, 2011.

[6] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust DNN embeddings for speaker recogni-
tion,” in ICASSP, Calgary, 2018.

[7] M. McLaren, D. Castan, M. K. Nandwana, L. Ferrer, and
E. Yılmaz, “How to train your speaker embeddings extractor,” in
Odyssey: The Speaker and Language Recognition Workshop, Les
Sables d’Olonne, 2018, submitted.

[8] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[9] N. Brümmer, L. Burget, P. Garcia, O. Plchot, J. Rohdin,
D. Garcia-Romero, D. Snyder, T. Stafylakis, A. Swart, and
J. Villalba, “Meta-embeddings: a probabilistic generalization of
embeddings in machine learning,” In progress. Draft available:
github.com/bsxfan/meta-embeddings, 2017-2018.

[10] R. T. Behrens and L. L. Scharf, “Signal processing applications of
oblique projection operators,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 6, pp. 1413–1424, Jun 1994.

[11] N. Brümmer, “EM for Simple PLDA,” Agnitio Research,
South Africa, Tech. Rep., November 2010. [Online]. Available:
sites.google.com/site/nikobrummer/EMforSPLDA.pdf

[12] ——, “A minimum divergence recipe for VBEM,” Agnitio Re-
search, South Africa, Tech. Rep., October 2010. [Online]. Avail-
able: sites.google.com/site/nikobrummer/VBEMandMINDIV.pdf

[13] G. J. McClachlan and T. Krishnan, The EM Algorithm and Exten-
sions, 2nd ed. John Wiley & Sons, 2008.

[14] L. Ferrer, H. Bratt, L. Burget, H. Cernocky, O. Glembek, M. Gra-
ciarena, A. Lawson, Y. Lei, P. Matejka, O. Plchot et al., “Promot-
ing robustness for speaker modeling in the community: the prism
evaluation set,” https://code.google.com/p/prism-set/, 2012.

[15] NIST, “The nist year 2010 speaker recognition eval-
uation plan,” www.itl.nist.gov/iad/mig/tests/sre/2010/
NIST SRE10 evalplan.r6.pdf, 2010.

[16] “The 2016 NIST speaker recognition evaluation plan (sre16),”
https://www.nist.gov/file/325336.

[17] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in Interspeech, 2017.

[18] D. Sturim and D. Reynolds, “Speaker adaptive cohort selection
for tnorm in text-independent speaker verification,” in Acoustics,
Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05).
IEEE International Conference on, vol. 1. IEEE, 2005, pp. I–
741.

[19] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The 2016
speakers in the wild speaker recognition evaluation.” in Inter-
speech, 2016, pp. 823–827.

[20] D. Garcia-Romero, A. McCree, S. Shum, N. Brümmer, and C. Va-
quero, “Unsupervised domain adaptation for i-vector speaker
recognition,” in Odyssey: The Speaker and Language Recogni-
tion Workshop, 2014.

76

