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Abstract
Mizo is an under-resourced tonal language that is mainly

spoken in North-East India. It has 4 canonical tones along
with a tone-sandhi. In Mizo language, a majority of the words
contain tone information. As a result of that, it exhibits higher
acoustic variability like other tonal languages in the world.
In this work, we investigate the impact of tonal information
on robust Mizo continuous speech recognition (CSR). First,
separate baseline CSR systems are developed employing the
Mel-frequency cepstral coefficient (MFCC) based acoustic
features and salient acoustic modeling paradigms. For further
improvement, the tonal information has been incorporated in
each of the CSR systems. For this purpose, 3-dimensional tonal
features are derived which include pitch, pitch-difference, and
probability of voicing values. Our experimental study reveals
that with the inclusion of tonal information, the robustness of
Mizo CSR system gets enhanced across all acoustic modeling
paradigms. This trend is attributed to lesser degradation in
the fundamental frequency information than the vocal tract
information under noisy conditions.

Index Terms: Mizo language, tonal information, robust CSR

1. Introduction
Continuous speech recognition (CSR) for tonal languages have
been extensively studied in languages like Cantonese, Man-
darin, Thai, Vietnamese. Previous studies have reported that
tones carry important lexical information in tonal languages
which serves as an important cue for speech recognition
tasks [1–7]. In Cantonese speech recognition task, 8% relative
improvement in character error rate is achieved using weighted
tone information [2]. Cao et al. reported that tone informa-
tion integration helped in achieving a 16.2% relative charac-
ter error rate reduction in continuous Mandarin speech recogni-
tion [4]. Similarly, in Mandarin Broadcast News speech recog-
nition task, Lei et al. [5] reported the reduction of the character
error rate from 13.0% to 11.5% on CTV test set. In case of Thai
spelling recognition task, it has been reported that inclusion of
tone information resulted in 23.85% error rate reduction from
the baseline system [6]. Similarly 28.6% relative reduction in
word error rate is reported when tone information is incorpo-
rated in Vietnamese continuous speech recognition system [7].
In case of noisy speech conditions, the vocal tract information
gets severely affected, yet the fundamental frequency (F0) in-
formation is largely retained. Drugman et al. [8] reported that
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Figure 1: F0 contours of four contrastive tones with tone-
sandhi in Mizo. The data involved in this tonal analysis is de-
scribed in [10, 11].

excitation source based features are robust to noisy conditions.
Yasui et al. [9] achieved the improvement in word accuracy
from 43.2% to 52.5% with inclusion of F0-based tonal features
when evaluated on noisy JNAS database test set.

In this work, we have considered Mizo as the language of
study and explored the effectiveness of tone information in the
context of Mizo continuous speech recognition task. Apart from
using tone related features, we have also explored modeling the
acoustic-phonetic units using tone information. Mizo is an eth-
nolinguistic term which stands for both the language and the
tribe. Genetically, Mizo belongs to the Kuki-Chin-Naga sub-
group of the Tibeto-Burman language family spoken by about
700, 000 speakers in the state of Mizoram and its neighbouring
states in North East of India. Apart from India, it is also spo-
ken in neighbouring countries like Myanmar and Bangladesh.
Preliminary studies reported that Mizo has four canonical tones
namely high, low, rising and falling [12–15]. As shown in Fig-
ure 1, the four tones in Mizo are found to be significantly dif-
ferent from each other in terms of their F0 slopes [14]. Hence,
along with the F0 contour, the F0 slope plays a significant role
incorrect identification of tones in Mizo [16]. Accordingly, a
method for automatic detection of tones was proposed, resulting
in about 70% accuracy incorrect classification of the four tones
in Mizo [17]. Apart from the four canonical tones, there is tone-
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Table 1: Description of Mizo speech corpus used in this study

Entity Training Testing
Duration of speech data (in Hrs) 5.5 1.5
No. of utterances 7394 1568
No. of speakers 62 19
No. of male speakers 31 12
No. of female speakers 31 7

sandhi in Mizo where the presence of high and falling tone after
a rising tone lowers the F0 of the rising tone [11, 12, 15, 18].

The remainder of the paper is organized as follows. Sec-
tion 2 describes the speech corpus used in this work. Section 3
discusses the tones in Mizo. Section 4 discusses the experi-
mental set up. Section 5 discusses the experimental results and
finally, the paper is summarized and concluded in Section 6.

2. Speech Corpus
The speech corpus is collected from 81 native Mizo speakers
covering a vocabulary size of 670 words. The speech data is
recorded in a sound treated booth with a Shure SM10A head-
mounted, close talk microphone connected to a Tascam DR100-
MKII recorder. The elicited production is digitally recorded
at a sampling frequency of 16 kHz and bit resolution of 16
bits/sample. The recorded speech files are chunked into small
segments of 3 − 5 second duration, depending on the pauses.
The reading material used in this corpus consists of 9 different
Mizo passages. Each passage consists an average of 38 sen-
tences. Each speaker reads a minimum of two passages. The
entire speech corpus is divided into two parts in approximately
8 : 2 proportion. The major portion of the speech corpus is used
for training the acoustic models while the minor portion is used
for evaluating the efficacy of the trained phone models. While
dividing the speech corpus into two parts, it is ensured that the
speakers in the training set are different from those in the testing
set. The descriptive statistics of the speech corpus used in this
study is provided in Table 1.

3. Tones in Mizo
The tone bearing unit in Mizo is the rhyme of a syllable where
the nucleus is vowel(s) or vowel(s) nucleus and sonorant coda.
As mentioned earlier, Mizo has four different tones, namely,
high, low, rising, and falling with a rising tone-sandhi. The F0
contours of the four canonical tones and sandhi tone in Mizo
are shown in Figure 1. As seen in Figure 1, high tone and tone-
sandhi have static F0 contours while low, falling and rising tone
show dynamic F0 contours. The F0 contours of low tone and
tone-sandhi start at the same point and the low tone falls gradu-
ally from about 20% of the total duration till the end while tone-
sandhi remains level. At the same time, the initiation point of
rising tone is close to the initiation points of low tone and tone-
sandhi, with a short downward dip initially which later starts to
rise from about 30% until 90% of the total duration. Falling
and high tones, on the other hand, share the same starting point,
falling tone shows a gradual falling F0 contour pattern through-
out the total duration while high tone shows a pattern of level
F0 contour. The four canonical Mizo tones: high, low, rising
and falling along with tone-sandhi are indicated as H, L, R, F,
and S, respectively throughout the paper. There are 36 phonetic
units defined in Mizo. The complete phonetic inventory along

Table 2: Inventory of Mizo phonetic units

Phonetic units
in IPA

Phonetic units
in ASCII

Phonetic units with their
corresponding tones in ASCII

a a a, a-F, a-H, a-L, a-R
b b b
O c c, c-F, c-H, c-L, c-R
d d d
e e e, e-F, e-H, e-L, e-R
f f f
h h h
l
˚

hl hl
m
˚

hm hm
n
˚

hn hn
N
˚

hng hng
r
˚

hr hr
i i i, i-F, i-H, i-L, i-R, i-S
k k k
kh kh kh
l l l, l-F, l-H, l-L, l-R

m m m, m-F, m-H, m-L, m-R, m-S
n n n, n-F, n-H, n-L, n-R, n-S
N ng ng, ng-F, ng-H, ng-L, ng-R, ng-S
o o o-F, o-H, o-L, o-R, o-S
p p p
ph ph ph
r r r, r-F, r-H, r-L, r-R, r-S
s s s
t t t
th th th
tl
˚

tl tl
tl
˚

h tlh tlh
tr
˚

tr tr
tr
˚

h trh trh
ts ts ts
tsh tsh tsh
u u u-F, u-H, u-L, u-R
v v v
P x x
z z z

with the tonal annotation is shown in Table 2.

4. Experimental Setup
In this section, we discuss the different acoustic modeling
paradigms that have been adopted in this study. We have ex-
plored the deep neural network (DNN) and subspace Gaussian
mixture model (SGMM) based acoustic modeling approaches
in addition to the Gaussian mixture model (GMM) based ap-
proach. All the experimental evaluations are conducted using
the Kaldi speech recognition toolkit [19].

4.1. Front-end features

Experimental evaluations are carried out using one of the most
widely used front-end, the Mel frequency cepstral coefficients
(MFCC) [20]. The MFCC feature vectors are computed from
Hamming windowed frames of 25 ms duration with a frame
shift of 10 ms and pre-emphasis factor of 0.97. Each feature
vector consists of log-energy and 12 MFCCs (C1-C12). In or-
der to capture the dynamic characteristics of the vocal tract sys-
tem, 13-dimensional static MFCC features are appended with
their velocity and acceleration components. The resulting 39-
dimensional final vector is used in the acoustic modeling.
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4.2. GMM-HMM system

This system is initialized with a context-independent mono-
phone acoustic model using 39 dimensional MFCC feature vec-
tors. Each of the 36 phonetic units listed in the second column
of Table 2 is modeled by a 3 state left-to-right HMM model
where the probability density function of each state is a GMM
with 8 mixtures. In order to capture contextual information,
cross-word triphone acoustic models are trained with decision
tree-based state tying. The 13 dimensional static MFCC fea-
ture vectors are spliced in time in order to capture the dynamic
information implicitly from feature vectors of the neighbouring
frames. Four frames to the left and 4 frames to the right of the
central frame are spliced thereby making the total feature di-
mension to 117 (13× 9). The dimension of the spliced feature
vector is then reduced from 117 to 40 through LDA. The result-
ing feature vectors are further decorrelated using MLLT. The
derived feature vectors are normalized using cepstral mean and
variance normalization. The extracted features are further nor-
malized using fMLLR [21] and speaker adaptive training (anas-
tasakos1997speaker) [22] is employed using fMLLR transfor-
mations.

4.3. SGMM-HMM system

In conventional GMM-HMM systems, a large number of model
parameters are required to be estimated. This problem is well
addressed by the SGMM [23] based acoustic modeling frame-
work. In this approach, the complex distribution of parameters
is represented in a compact way. Here, the HMM states globally
share a common structure, and only the state-dependent param-
eters are required to be estimated. Instead of estimating GMM
parameters directly from the training data, the model parame-
ters are derived from the low-dimensional model and speaker
subspaces that can capture phonetic and speaker correlations.
As a result of this, the total number of parameter estimation is
reduced, which makes it possible to learn the model parameters
with a limited amount of training data. Here the unit distribu-
tions are derived from a universal background model (UBM).
In the current work. 400 Gaussians are selected for training the
UBM.

4.4. DNN-HMM system

We also explored the DNN-HMM-based acoustic modeling ap-
proach in this study. A feed-forward deep neural network is
trained using multiple hidden layers that takes time-spliced fea-
ture vectors with LDA+MLLT+fMLLR as input and computes
the posterior probabilities over HMM states as output. The
specification of the parameters used in training the DNN-HMM
system is detailed in Table 3.

4.5. Tone features and tone modeling

Since Mizo is a tonal language, we have also extracted 3-
dimensional tonal features i.e., pitch, pitch-difference, and
probability of voicing (POV). The tonal features are extracted
using Kaldi pitch tracker [24]. It is a highly modified ver-
sion of the robust automatic pitch tracking algorithm (RAPT)
that assigns a pitch not only to voiced frames but also to un-
voiced frames while constraining the pitch trajectory to be
continuous. The algorithm produces a quantity that can be
used as a probability of voicing measure that is based on find-
ing lag values that maximize the normalized cross-correlation
function (NCCF). The 3-dimensional tonal features are ap-
pended to the 13-dimensional MFCC features. The resulting

Table 3: Parameter specifications of DNN-HMM system

Parameter Specification
No. of hidden layers 3
No. of epochs 20
Dimension of hidden layer 1024
Mini batch size 128
Initial learning rate 0.01
Final learning rate 0.0015

Table 4: Phone level break up of an example word in the lexicon
with and without tone information

Lexicon Word Phone level break up
Without tone information Mizoram m i z o r a m

With tone information Mizoram m i-L z o-H r a m-H

16-dimensional base feature vectors are time spliced with a con-
text of 9 frames considering 4 frames to the left and 4 frames to
the right of the central frame. Using linear discriminant analysis
(LDA) [25,26], the dimension of the spliced feature vectors are
reduced from 144 (16× 9) to 40. The resulting feature vectors
are further decorrelated using maximum likelihood linear trans-
form (MLLT) [27, 28] and feature-space maximum likelihood
linear regression (fMLLR) [21].

The baseline CSR system is modeled using 36 phonetic
units as listed in the second column of Table 2. However, these
phonetic units do not model the tone information. In order to
capture the tone information in the language, the phonetic units
are modeled along with their associated tone information as
listed in the third column of Table 2. For illustrating the im-
plementation of tone modeling, an example word in the lexicon
with and without tone information is shown in Table 4.

5. Results and discussion
For evaluating the noise robustness of Mizo speech recognition
system, three set of experiments are performed with varying
noise conditions. All the experimental studies are conducted
for 3 different modeling paradigms, i.e., GMM-HMM, SGMM-
HMM, and DNN-HMM. The linguistic evidence is captured us-
ing a bi-gram language model (LM) learned on the transcript of
the acoustic training data. The same LM is employed for evalu-
ating the recognition performances of all three systems.

In the first study, the acoustic models are trained and tested
on clean speech. This is considered as the baseline system.
Time-spliced MFCC feature vectors with LDA+MLLT+fMLLR
transforms are used as input to the systems. The obtained re-
sults are shown in Table 5. It is observed that relative reduc-
tion of 3.81% and 5.53% in WER are observed in the case of
SGMM-HMM and DNN-HMM-based systems with respect to
the GMM-HMM-based system.

The next set of experiments are performed by appending the
MFCC features with tone features and incorporating the tone
model in all three kinds of acoustic modeling. The outcomes
of this study are presented in Table 6. It is followed by testing
of the developed systems on noisy test conditions. Two types
of stationary noises, white and pink, are used for this purpose.
SNR level of 5 dB is set for both types of noise. The results
obtained in this study are also given in Table 6.

For clean test condition, a small but consistent improve-
ment is noted with the addition of tonal information for all three
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Table 5: Baseline performances of three different kinds of acoustic modeling based CSR systems developed in this work

Train
Condition

Test
Condition

Acoustic
Model %WER

Clean Speech Clean Speech
GMM-HMM 13.37

SGMM-HMM 12.86
DNN-HMM 12.63

Table 6: Assessment of the inclusion of tone features and tone modeling for Mizo continuous speech recognition under clean and noisy
test conditions. The performances are evaluated separately for three different kinds of acoustic modeling techniques.

Train
Condition

Test
Condition

Acoustic
Model

%WER

MFCC MFCC+
Tone Feats

MFCC+
Tone Feats+
Tone Model

Clean Speech

Clean Speech
GMM-HMM 13.37 13.35 13.12

SGMM-HMM 12.86 12.80 12.29
DNN-HMM 12.63 12.27 11.96

White Noise (5dB)
GMM-HMM 60.31 42.48 42.47

SGMM-HMM 59.08 40.83 34.66
DNN-HMM 54.38 37.37 31.57

Pink Noise (5dB)
GMM-HMM 65.42 55.49 53.27

SGMM-HMM 65.67 51.11 46.33
DNN-HMM 57.92 49.95 43.79

acoustic modeling cases. In case of 5 dB white noise test condi-
tion, it is observed that DNN-HMM-based modeling approach
helps in reduction of WER from 60.31% in GMM-HMM-based
system to 54.38% using MFCC features. The WER is reduced
to 37.37% when tonal features are appended to the MFCC fea-
tures. The WER is further reduced to 31.57% when tone mod-
eling is incorporated in addition to the MFCC + tonal features.
Similarly, for 5 dB pink noise test condition, relative reductions
of 13.76% and 24.4% in WER are achieved with the inclusion
of tone features and tone model respectively in the DNN-HMM
system.

For the summarized assessment, the relative improvements
obtained with/without the inclusion of tonal features as well as
tone modeling for all the systems under different testing condi-
tions are computed and are shown in Figure 2. It can be noted
that under both noisy test conditions substantially larger rela-
tive improvements have resulted due to the inclusion of tonal
information. This, in turn, supports our earlier argument that by
exploiting the tonal characteristics present in the speech, a more
noise robust CSR performance can be achieved.

6. Summary and conclusion
In this paper, we describe the attempts made for developing a
Mizo CSR system. Since Mizo is a tonal language, the lexi-
cal meaning of a word changes with variation in the tone. For
enhancing the recognition performance, the pitch related fea-
tures and the tonal characteristics have been incorporated in
Mizo CSR systems created following three different kinds of
acoustic modeling approaches. The resulting tonal CSR sys-
tems have resulted in significantly improved recognition perfor-
mances, in particular, under noisy test conditions. It is known
that the pitch (fundamental frequency) information undergoes
lesser degradation than the vocal tract information in presence
of additive noise. This explains why the explored tonal Mizo
CSR systems exhibit marked robustness for the test data cor-
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Figure 2: Percentage relative improvement in WER obtained
with inclusion of both tonal feature and tone modeling under
different test conditions.

rupted with white and pink noise types. For the simplicity of
considered noise types, a more detailed study involving realis-
tic noise types is warranted and the same will be undertaken as
the future work.
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