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Abstract
Despite the continuous progress of Automatic Speech recog-
nition (ASR) technologies, these systems for Indian languages
are still in infancy stage due to a multitude of challenges in-
volved, including resource deficiency. This paper addressed this
challenge with four Indian languages, Hindi, Marathi, Bengali,
and Oriya by integrating articulatory information into acous-
tic features, thereby compensating the low resource property of
these languages. Articulatory movements were recorded during
speech production using an electromagnetic articulograph and
trained together with acoustic features to build automatic speech
recognizers for these languages. Both speaker-dependent and -
independent recognition experiments were conducted by adopt-
ing three ASR models: Gaussian Mixture Model (GMM)-
Hidden Markov Model (HMM), Deep Neural Network (DNN)-
HMM, and Long Short Term Memory recurrent neural network
(LSTM)-HMM. A cross-language similarity was discerned in
both acoustic and articulatory domains in the pairs of Oriya-
Bengali and Hindi-Marathi. Based on these observations, a
multi-lingual, multi-modal speech recognizer was built by con-
structing a unified dictionary consisting of common and unique
phonemes of all the four languages, which significantly reduced
the phoneme error rates.
Index Terms: speech recognition, Procrustes matching, hidden
Markov model, long short term memory networks

1. Introduction
Automatic Speech Recognition (ASR) enables a machine to
recognize voice commands by emulating a voice pattern against
acquired vocabulary. ASR has been recently commercially used
for resource-rich languages such as English, Mandarin, and a
few European languages. Research for resource-scarce lan-
guages such as Indian languages, however, is yet to gain mo-
mentum. India, the second largest populated country, has more
than 5000 languages, of which 22 are official. Moreover, for the
70% of Indian population living in rural areas, having ASR en-
abled machine applications built in their native language would
be another true progress of ASR.

Primary research on ASR for Indian languages has been fo-
cused on Hindi [1], the national and most common language of
India. For Hindi, researchers have studied isolated word recog-
nition [2], online speech to text engine [3], large vocabulary
ASR [4], speeding up the statistical pattern classification [5],
and connected digit recognition system [6]. For ASR in Ben-
gali, phoneme recognition [7], Tr acoustic modeling [8] and
SPHINX3 based Shruti-II [9] have been investigated. ASR for
Marathi and Oriya is limited, including IVR [10] for Marathi
and isolated digit recognition for Oriya [11].

Articulatory information has been proven effective in ASR
as an additional source to acoustic features for English [12, 13].
Various technologies have been used to track articulatory mo-
tion such as ultrasound [14], surface electromyography [15],
and electromagnetic articulograph (EMA) [16, 17]. Each tech-
nique is unique in terms of their advantages for collecting artic-
ulatory motion data. Comparatively, EMA is a more direct mea-
sure of flesh point artiuculatory movement, since it captures the
3-D motion of sensors adhered to the articulators (tongue and
lips) [18] and hence has been used in this study. To our knowl-
edge, adding articulatory information on top of acoustic features
has rarely been studied for Indian languages.

Multi-lingual ASR has been recently studied to build an
effective ASR system for resource-scarce languages. Most of
these research are based on modeling common acoustic parame-
ters across languages [19, 20, 21]. An alternative approach is to
build a common phoneme set. For example, fast bootstrapping
of large vocabulary continuous speech recognition systems with
multilingual phoneme sets [22] and language adaptive acous-
tic modeling [23] for Europian languages, language dependent
state clustering [24] for African languages and multi-lingual
DNNs for global phones [25]. Although few have attempted to
develop a multi-lingual ASR for Indian languages [1, 26], low
data availability combined with phonological differences such
as long and short vowels, lack of aspirated stops, aspirated con-
sonants, and multi-occurrence of allophones makes its efficient
establishment a daunting task [27]. To overcome these difficul-
ties, a Unified Dictionary (UD) consisting both common and
language-specific phonemes of the multiple languages may be
useful.

In this paper, we built an automatic speech recognizer for
Hindi, Marathi, Bengali and Oriya languages with articula-
tory information combined into acoustic features. We have
used GMM-HMM and DNN-HMM based speech recognition
models for Speaker-Dependent (SD) ASR experiment. Besides
these two models, we also applied LSTM-HMM for Speaker-
Independent (SI) ASR experiment. High phoneme level simi-
larity was found in Hindi-Marathi language pair as well as in
Oriya-Bengali. Hence, we further built a multi-lingual ASR
with Unified Dictionary (UD) consisting phonemes of all the
four languages.

2. Data Collection
2.1. Participants and Speech Task

Two native male speakers (mean age=27.5 years) participated
in the data collection for all of the four languages. Neither any
issues of speech, hearing, cognitive or language disorders from
the participants were reported nor they had any family history of
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Figure 1: Sensor labels and locations (described in the text).

such disorders. Each subject had the speech task of saying 132
phrases (commonly used sentences for Alternative Augmented
Communications (AAC), e.g., I need to see a doctor.) at their
normal speaking rate in Hindi (Subh dopahar), Marathi (Subh
Dopar), Bengali (Subho Bikalo) and Oriya (Subha Aparanha).

2.2. Articulatory Motion Tracking

The Wave system (Northern Digital Inc., Waterloo, Canada),
a commercially available electromagnetic tongue and lip mo-
tion tracking device, was used to record the motion of the head,
tongue, and lips. Four small sensors were attached to the surface
of each articulator using dental glue (PeriAcryl 90, GluStitch)
or tape, at the Tongue Tip (TT), Tongue Back (TB), Upper Lip
(UL), and Lower Lip (LL) as in Figure 1. An additional sen-
sor was attached to the middle of the forehead (Head Center,
HC) for head motion correction. Our prior work has conveyed
that this four-sensor set is an optimal set for recognition per-
formance [28]. Hence, the flesh point three-dimensional artic-
ulatory movement data was chosen to be tracked and recorded
from sensors placed at TT, TB, UL, and LL. The spatial preci-
sion of Wave for motion tracking is approximately 0.5 mm and
the sampling rate of the recording was 100 Hz [18].

Prior to data analysis, translation and rotation of the HC
sensor were subtracted from the motion data of the tongue and
lip sensors to obtain head-independent articulatory data. Head
translation and rotation removal was automatically done by the
Wave system. Figure 1 illustrates the derived 3D Cartesian co-
ordinates system, in which x is left-right direction; y is vertical
and z is the front-back direction. Only y and z axes coordinates
of the articulatory position with time were used for training as
x-axis data, i.e, the lateral movement of articulators, is not very
significant [18]. Figure 2 illustrates an example of tongue and
lip motion for the word “good” in each of the four languages.
The four languages have similar motion patterns for TB, but
different for other sensors.

Acoustic data were collected synchronously with articula-
tory movement data by a built-in microphone in the Wave sys-
tem with a sampling rate of 22050 Hz. 132 spoken utterances
(average of 5, 534 phonemes/612 words) of each language were
collected for analysis. The numbers of unique phonemes are
55, 66, 51 and 46 for Hindi, Marathi, Bengali, and Oriya, re-
spectively. The average number of unique words in the four
languages was 412.

2.3. Acoustic and Articulatory Features

Acoustic features are 39-dimensional MFCCs consisting of 13
static and their first and second derivatives with a frame size of
25 milliseconds and shift size of 10 milliseconds. We used 24

Figure 2: Articulatory motion trajectories of four sensors (TT,
TB, UL, and LL) for the word “good” in four languages.

dimensional EMA data consisting of 8 static data (2 dimensions
× 4 sensors) and their first and second order derivatives with
shift size of 10 milliseconds. Mean normalization was done
along each dimension as a default setting. The two feature vec-
tors are concatenated and used as a final feature vector.

For SI approach, Procrustes matching based articulatory
data normalization was performed to remove inter-talker physi-
ological differences (tongue and lip orientation). In this method,
two dimensional (i.e., y and z coordinates) movement data of
TT, TB, UL, and LL were transformed into a normalized shape
with a centroid at the origin (0, 0). The centroids of the UL and
LL formed a vertical line [29].

3. Methods
ASR performance using acoustic features with and without ar-
ticulatory information were compared in this study. Three
unique and different approaches such as GMM-HMM, DNN-
HMM and LSTM-HMM were used for ASR analysis. For SD-
ASR, due to low data availability, only the first two approaches
were considered whereas for SI all three of them were used for
analysis. Detailed configurations of the features and the ASR
models are summarized in Table 1.

3.1. GMM-HMM

We trained with monophone GMM-HMM with different num-
ber of states (170 for Hindi, 203 for Marathi, 158 for Bengali
and 143 for Oriya) for the four languages based on their unique
number of existing phonemes. 3 states for each phone and 5
states for silence were taken. A total of 8 Gaussians per state
were considered and a 3 state left to right HMM was used with
a training method of Maximum Likelihood Estimation (MLE).

3.2. DNN-HMM

DNN-HMM is typically trained with multiple frames of speech
features to produce posterior probabilities over HMM states as
output for decoding. We trained the DNN with 5 hidden lay-
ers (optimal number based on experimentation) with each layer
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Table 1: Experimental setup

Components Details
Acoustic feature
Feature vector MFCC+ ∆ + ∆∆

Dimension = 39 (3 × 13)
Sampling rate 22050 Hz
Window length 25ms
Articulatory feature TT, TB, UL, LL
Feature vector 8 sensors + ∆ + ∆∆

Dimension = 24 (3 × 8)
Concatenated feature
Feature vector MFCC + ∆ + ∆∆ +

8 sensors + ∆ + ∆∆
Dimension = 63(39 + 24)

Common
Frame rate 10 ms

LSTM-HMM
Input layer dimension 63 (24+39)
Output layer dimension monophone

170 for Hindi
203 for Marathi
157 for Bengali
143 for Oriya
290 for Unified Lexicon

Number of LSTM cell units 320 per hidden layer
Depth 2 forward hidden layers
Training method BPTT

Language model Bigram phoneme LM
Metric of ASR Phoneme error rates
Data sampling for training 6 fold cross-validation

consisting 128 nodes. The input layer was designed to take 9
frames at a time (4 previous+1 current+4 succeeding) with fea-
ture vector dimension of 216 (9×24) when trained only using
articulatory features, 351 (9×39) for acoustic features and 567
(9×(39+24)) when both were concatenated. The output layer
of DNN was fixed and based on the language (170 for Hindi,
203 for Marathi, 158 for Bengali and 143 for Oriya). The
parameters were initialized using layer-by-layer pre-training
based on restricted Boltzmann machines (RBMs) and the net-
work was trained using backpropagation [30].

3.3. LSTM-HMM

Long Short Term Memory (LSTM) recurrent neural networks
contain memory blocks with a set of recurrently connected sub-
nets [31], built similar to recurrent neural networks (RNN) by
replacing the non-linear units with memory blocks in the hidden
layers. These memory blocks help LSTM to overcome the van-
ishing gradient problem of RNN. Hence, LSTM models have
been widely used in the area of ASR [29, 32]. In our model,
each layer contained 320 cell units and parameters were trained
using Back Propagation Through Time (BPTT).

The bigram phoneme language model was used for the
phoneme sequence recognition. The training and decoding
were performed using the Kaldi speech recognition toolkit [33].
Phoneme Error Rates (PERs) were used as the performance
measure of Indian speech recognition. Six-fold cross-validation
was used to perform SI phoneme recognition in the experiment.
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Figure 3: Performance improvement by adding articulatory in-
formation in speaker-dependent ASR for Indian languages.

3.4. Multi-Lingual ASR: UD-LSTM-HMM

Multilingual phoneme set was prepared from monolingual mod-
els by combining acoustically similar phones to form a Unified
Dictionary of the four languages. It was assumed that these
acoustically similar phones are also similar in their articula-
tory representations across Indian languages. Beside few Perso-
Arabic scripts (Kasmiri, Urdu and Sindhi), all other scripts for
Indian languages have been originated from the ancient Brahmi
script. Hence, they are expected to have some common pho-
netics similarity. From Indic TTS-CLS [34] it is evident that
there are 8 vowels and 33 consonants that are common in the
four languages. The Unified Dictionary was built by defining
a new dictionary that consists all unique phonemes in the four
languages - with a total of 95 phonemes having 41 common
phonemes and 54 unique (language-specific) phonemes. We
trained SI-LSTM-HMM model on this unified dictionary with
an output layer dimension of 290 (95 phonemes × 3 states + 5
states (silence)) to find the monphone based PERs.

4. Results and Discussion
4.1. Speaker-dependent recognition

Figure 3 shows the phoneme recognition performance of acous-
tic features only (MFCC), articulatory features only (MV8),
and their combination (MV8+MFCC) on the speaker-dependent
GMM- and DNN-based ASR systems for four Indian lan-
guages. Adding articulatory information on top of acoustic fea-
tures significantly improved the ASR performance (PER reduc-
tion) for all the four Indian languages. This observation indi-
cated that lip and tongue movement data contain complemen-
tary information to MFCC in phoneme recognition. We also in-
vestigated the performance using articulatory information only.
As shown in Figure 3, when only articulatory data was used, the
performance was consistently poorer than using MFCC. This
finding is expected because articulatory features alone contain
less information than speech acoustics (e.g., lack of voice).

In comparison, DNNs slightly outperformed GMM for all
four languages (See Figure 3), although DNN typically requires
a larger training data set for effective performance. The average
Phoneme Error Rate reduction was about 3% than GMM-HMM
approach. We obtained an average PER of 26.2%, 34.1%,
28.4% and 27.7% for Hindi, Marathi, Bengali and Oriya lan-
guages, respectively, using DNN-HMM based ASR recognition
even when the training data was approximately 20 minutes for
each language. The high PER in Marathi language (34.1%)
is probably due to the presence of larger number of unique
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Figure 4: Performances of different speaker-independent ASR models for Indian languages using acoustic and articulatory features.

Table 2: Performances (in %PER) for cross-lingual ASR

Testing Training

Hindi Marathi Bengali Oriya UD

Hindi 18.2 42.3 62.5 56.2 16.1
Marathi 49.8 22.1 69.2 67.3 16.9
Bengali 58.6 66.4 20.5 47.3 16.4
Oriya 59.3 63.4 46.6 19.4 16.2

phonemes in this language than the rest.

4.2. Speaker-independent recognition

Figure 4 shows the performance of SI GMM-, DNN-, LSTM
and UD-LSTM-based speech recognizers for the four Indian
languages, respectively, using MFCCs only as well as combined
with articulatory data. Due to the effectiveness of Procrustes
matching based articulatory normalization across speakers, both
GMM and DNN based recognition approaches performed bet-
ter than speaker-dependent case. As evident from Figure 4, an
average of 5% PER improvement was discerned due to Pro-
crustes matching itself. Similarly, for SI study, the inclusion
of articulatory features enhanced the ASR performance by 6%
PER reduction. LSTM model due to its inherent characteris-
tics of sequential learning outperformed both GMM and DNN-
based ASR approaches. This observation confirmed that LSTM
neural network can be used for small sized data and maybe a
better speech recognition architecture for Indian languages than
DNNs.

Limitation. Although the results are promising, our data
size is small and no female speakers were included. It is still
unclear if the findings can be generalized to a larger number of
Indian speakers include both males and females.

4.3. Recognition with a Unified Dictionary

To investigate the cross-language similarity, we performed a
criss-cross training-testing procedure among the four languages
in a speaker-independent way. We trained our model with the
dictionary built on phonemes of Hindi language and tested with
the other three language data. The same procedure was repeated
for Bengali, Marathi and Oriya. Recognition performance of
this experimentation is displayed in Table 2. The %PERs for
the pairs of Hindi-Marathi and Bengali-Oriya were found to be
comparatively less, which indicated the phoneme level similar-

ity in-between these pairs. The same pattern was also observed
in articulatory space as shown in Figure 2. Motion contours of
tongue and lip movement for the same stimuli were found to
be visually similar for Hindi and Marathi as well as for Ben-
gali and Oriya. These results motivated for the construction of
a multi-lingual ASR built on a Unified Dictionary.

The rightmost column in Table 2 indicates that %PER
was significantly reduced with a Unified Dictionary, giving
PERs about 16% for these languages. A possible explanation
is due to the integration of all the phonemes in one dictio-
nary, the training data set increased up to four times than the
prior approaches. This resulted in repeated training of simi-
lar phonemes along with the corresponding articulatory move-
ments for similar words. An example would be, the word
“good” has the phoneme representation when translated into
Hindi: s − u − bh, in Marathi: s − u − bh, in Bengali:
s − u − bh − o and in Oriya: s − u − bh − ax. Hence, with
the Unified Dictionary, the phonemes s, u, bh were trained four
times for a single phrase and hence resulted in a reduced PER.

5. Conclusions
The results suggest that adding articulatory information on top
of acoustics may improve the ASR performance for Indian lan-
guages. It also encourages for a multi-lingual approach to be
more suitable for Indian languages due to the inter-language
phonetic similarity. The experimental results also confirm on
the existence of a high level of acoustic and articulatory sim-
ilarity between Hindi and Marathi as well as between Bengali
and Oriya. Moreover, LSTM neural network outperformed the
GMM and standard DNN in our experiments. Although this
study only included four languages, the results propose that a
multilingual approach with added articulatory data can be gen-
eralized for other Indian languages. Due to the logistic difficulty
of tongue motion data collection, (quasi-) articulatory data can
be obtained from acoustic data based on a speaker-independent
inverse mapping (e.g., [35] ) in practice.
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