
Speech intelligibility enhancement based on a non-causal Wavenet-like model

Muhammed Shifas PV, Vassilis Tsiaras, Yannis Stylianou

Speech Signal Processing Laboratory (SSPL), University Of Crete, Greece
{shifaspv,tsiaras,yannis}@csd.uoc.gr

Abstract
Low speech intelligibility in noisy listening conditions makes
more difficult our communication with others. Various strate-
gies have been suggested to modify a speech signal before it
is presented in a noisy listening environment with the goal to
increase its intelligibility. A state-of-the art approach, referred
to as Spectral Shaping and Dynamic Range Compression (SS-
DRC), relies on modifying spectral and temporal structure of
the clean speech and has been shown to considerably improve
the intelligibility of speech in noisy listening conditions. In this
paper, we present a non-causal Wavenet-like model for mapping
clean speech samples to samples generated by SSDRC. A suc-
cessful non-linear mapping function has the potential to be used
a) in improving the intelligibility of noisy speech and b) in the
Wavenet-based speech synthesizers as a model based intelligi-
bility improvement layer. Objective and subjective results show
that the Wavenet-based mapping function is able to reproduce
the intelligibility gains of SSDRC, while by far it improves the
quality of the modified signal compared to the quality obtained
by SSDRC.
Index terms: speech intelligibility, Wavenet-like model, sam-
ple generation

1. Introduction
In day to day conversations the talker tries to retain the intelli-
gibility factors across the conversation to make speech under-
standable to the listener. Maintaining the speech intelligibility
above a threshold level by adapting to the surrounding noise
conditions will turn the listening task easier during the con-
versations. The articulatory modifications produced by human
during the adaptation to the surrounding noise conditions have
quite well been studied [1]. A system that is able to simulate
this behavior of the human articulatory effort has a great impor-
tance on designing effective speech reproduction and in general
speech processing systems. For example, in the case of text-to-
speech synthesizer operating in competing noise and/or talker
scenario such a system will improve the intelligibility of the
synthesized speech in order to overcome the disturbance mask-
ing. This is an active research area which is widely known as
the intelligibility enhancement of speech in noise, or listening
enhancement. Improvement of the speech intelligibility in noise
can be achieved by several techniques such as boosting the con-
sonants energies [2], or through spectral tilt flattening [3], or
formant sharpening and dynamic compression [4]. A state-of-
the-art method, referred to as Spectral Shaping and Dynamic
Range Compression (SSDRC), has been shown to provide high
intelligibility gain in various noisy listening conditions and out-
performs other approaches. SSDRC suggests a redistribution of
signal energy by applying time-frequency modifications.

Though SSDRC gives excellent improvement in intelligi-
bility when it it is applied on clean speech, the performance
drops dramatically when the input signal is noisy. This is be-

cause the noise in the noisy speech will also be enhanced, in the
sense it will be present. This is because there is not a mech-
anism in SSDRC to distinguish between noise and speech. It
has initially been designed to work on clean speech only. This
might be due to modifications applied in the magnitude spec-
trum during spectral shaping and therefore phase information is
ignored. In this work, our target is to design a new method for
speech intelligibility enhancement which will have the poten-
tial to address the issue to improve the intelligibility of noisy
speech. Such a method will be quite applicable in many situ-
ations like face to face communications, telecommunications,
human-machine interfaces etc, where noisy speech is rather
more common than clean speech.

Recently, Wavenet was suggested as a way to generate
speech/audio samples through a non-linear autoregressive ap-
proach based on deep learning [5]. Also a Wavenet-based ap-
proach has been suggested for speech denoising [6]. Inspired
by the work on [6], we suggest a Wavenet like approach to map
plain speech to SSDRC generated signal using a non-causal
Wavenet-like architecture. In short we are looking to define a
deterministic function that will be able to map samples of plain
speech to those (time-domain) samples generated by SSDRC.
Our motivation for such a sample-based non-linear mapping
can be also applied on noisy speech. Then we expect at some
higher layers a representation of a cleaner version of the input
noisy speech will be available to the subsequent higher layers,
which will target as their output to be the same as SSDRC-based
signals. These target signals have been computed by simply
applying SSDRC to the clean version of the input to the net-
work noisy speech. This might also lead to a better quality of
modified speech while still intelligibility is maintained. More
specifically we will work with a non-causal Wavenet-like archi-
tecture exploring, therefore, the conditional dependencies of the
sample generated at current time step to the future and past sam-
ples of the model input. This modeling of sample dependencies
are being implemented through dilated convolution structures.
We will refer to this new model as Wavenet-based SSDRC, or
shortly wSSDRC. Furthermore, this might help us to easier inte-
grate SSDRC within the latest development in speech synthesis
where Wavenet-based approaches are now dominated.

In the sections following, Section 2 briefly explains the SS-
DRC method. The details of the proposed wSSDRC model for
speech intelligibility enhancement are included in Section 3.
Experiments with two types of noise conditions will be covered
in Section 4, while observations and discussions are provided in
Section 5. Finally, Section 6 concludes the paper.

2. Spectral Shaping and Dynamic Range
Compression (SSDRC)

SSDRC improves speech intelligibility under various noisy lis-
tening conditions by applying spectral shaping and dynamic
range compression [7]. It combines properties of Lombard
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speech, implicit linguistic information and audio processing
strategies.

2.1. Spectral shaping (SS)

Spectral shaping is the first stage of the intelligibility enhance-
ment process. It has in total three filters, two of them performs
an adaptive to the probability of voicing spectral sharpening that
modifies the magnitude of the plain speech. This is followed by
a fixed spectral shaping filter, to boost the high frequency com-
ponents. The module takes the plain speech x(t) as input, in a
frame-based processing (frames are of fixed duration) and per-
forms Discrete Fourier Transform (DFT) on each frame to ob-
tain the magnitude spectral components, X(ω, t). On the adap-
tive spectral shaping, the local maxima (kind of formants) are
sharpened by a spectral sharpening filter Hs(ω, t) and the high
frequency components are being boosted by a pre-emphasis fil-
ter Hp(ω, t) followed. Both of the filters updates their coef-
ficients adaptively on the probability of voicing of individual
frames [4]. Hence, the adaptive spectral shaped signal can be
written as

YaSS(ω, t) = Hs(ω, t) Hp(ω, t)X(ω, t) (1)

For boosting the high frequency energies a non-adaptive pre-
emphasis filter Hr(ω, t) is employed to modify the spectra
by enhancing the frequency components falling in 1000Hz to
4000Hz by a factor of 12dB, while reduces the frequencies be-
low 500 Hz by 6dB/octave. The spectral shaped signal can be
expressed as

YSS(ω, t) = Hr(ω, t) YaSS(ω, t) (2)

Inverse Fourier transform and overlap add provides the spectral
enhanced speech.

2.2. Dynamic range compression (DRC)

In the dynamic range compression, the idea is to reduce the en-
velope variation of the speech. This task is achieved through
modifying the speech samples in each segment adaptive to
the temporal envelopes. DRC is a two step process. In the
first stage, envelope is dynamically compressed with recursive
smoothing process. The smoothed envelope that is projected to
the input output envelope characteristic (IOEC) curve gets the
final gain term for the DRC.

Finally, the spectral shaped output from the first module
(SS) multiplied by the estimated envelope gains during dynamic
range compression (DRC) will provide the final intelligibility
enhanced speech by SSDRC.

3. The Proposed wSSDRC Model
Wavenet [5] is a powerful generative approach for the proba-
bilistic modeling of raw audio, which is based on the assump-
tion that speech/audio is a Markov process where the condi-
tional probability for a sample, xt, given the r previous samples
is given by:

P (xt|xt−1, . . . , xt−r) (3)

The Wavenet generates the samples in a way to maximized these
conditional probability terms. This conditional mapping has
been implemented as an autoregressive network with a stack
of residual blocks, Fig.1, where each block contains expert and
gate followed the one-dimensional dilated causal convolution.
The output of the expert and the gate are being combined via
element-wise multiplication. Block, i, computes hidden state

Figure 1: Residual block to build the model

vector h(i), Eq.(4), which then being added (due to the residual
connections between layers) to the input after a one dimensional
convolution, to generate its output z(i).

h(i) = tanh(W
(i)
f ∗ z(i−1))⊙ σ(W (i)

g ∗ z(i−1)) (4)

z(i) = Conv1D(h(i)) + z(i−1) (5)
where symbol ∗ denotes convolution and symbol ⊙ denotes

element-wise multiplication.
In this work, similar to Rethage et.al [6], we consider

two major modifications in the architecture of Wavenet. First,
we use the network as a deterministic mapping, f , from in-
put speech x = [x1, . . . , xT ] to an enhanced signal ŷ =
[ŷr, . . . , ŷT−r]. Technically, this is done by removing the fi-
nal softmax layer and adding a layer which projects the out-
put of the post-processing layers to an one-dimensional signal.
Also, the compression of the input signal and its 8-bit quan-
tization which are important pre-processing steps in the orig-
inal Wavenet [5], are not used in this work. Second, instead
of considering only the previous r samples of x (receptive of
size r), to predict a sample of y at time t, we also consider the
next r samples of x, which in essence increased the receptive
field size to 2r − 1. Therefore, the enhanced sample at time
t ∈ {r + 1, . . . , T − r} is predicted as:

ŷt = f(xt−r, . . . , xt−1, xt, xt+1, . . . , xt+r) (6)

Fig.2 shows the dependence of the output sample ŷt on the in-
put samples. As shown in the figure, the dilated convolution
structure being used to calculate the activations of the nodes in
each block. Which means that the nodes on the ith level in a
block ignores the 2i − 1 in between samples on the layer below
while calculating the response, which is usually been known as
the dilation factor of the Wavenet. The skip connections from
each blocks are being summed up and processed through a post-
processing unit to get the final enhanced samples yt. The post
processing includes two layers of non-causal convolutions hav-
ing filter width equal to 3 whose output pass through a corre-
sponding ReLu non-linear function, and a one-dimensional con-
volution, without non-linearity function, which projects to the
output one dimensional signal. This model architecture facili-
tate the generation of set of samples in a single traverse through
the structure. when the whole input sequence is available then
all output samples can be computed in parallel.
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Figure 2: Proposed model architecture

The model is trained using pairs of time aligned signals
D = {(x(k), y(k)) | k ∈ {1, . . . , N}} by minimizing the
average absolute error between a predicted enhanced signal
ŷ(k) = f(x(k)) and the corresponding target enhanced signal
y(k).

L(x(k), y(k)) =
1

T (k) − 2r

T (k)−r∑

t=r

|y(k)
t − ŷ

(k)
t | (7)

where T (k) is the length of signals x(k) and y(k). Therefore,
the loss term differs from the actual Wavenet model which had
a probability loss function. This is because by removing the fi-
nal softmax layer from the post-processing stage, we turned the
network task to estimate sample error instead of the distribu-
tion. The model learns its weights during training by minimiz-
ing the above loss. Unlike the actual Wavenet architecture the
proposed model doesn’t intend to learn the distribution of the
output, which makes the conditioning insignificant in the con-
text of this model architecture . Since we have the parallel data
samples in hand, the model have specifically designed to gen-
erate a set of samples in a shot, rather than individual samples.
This gives more momentum for the generation process than the
actual Wavenet model and will be practically quite significant
for nearly real-time applications.

4. Experimental Setup
For our experiments, clean speech samples from a database
provided by the University of Edinburgh has been used [8].
This contains 48kHz recorded samples from 28 native English
speakers of both genders speaking 400 different sentences. To
being fit with our Wavenet-like model the data has been down
sampled to 16kHz. For the noisy conditions, we have con-
sidered the speech shaped noise (SSN) and stationary white
noise(SWN). For comparison purposes we picked-up the SS-
DRC system, which is the current best performing system on
the enhancement task. For the training of wSSDRC, we used
parallel speech data. Which is clean speech samples from the
mentioned data set as input to the Wavenet-like network, and
the target is being set as the SSDRC modified speech.

Regarding the Wavenet-like network structure, the non-
causal convolution filter width is three everywhere in the resid-
ual blocks, in which the dilation pattern 1,2,4,..., 512 is repeated
three times, resulting in a total of 30 residual blocks and a re-
ceptive field length, including the initial non-causal layer and

the post-processing layers, of 6145 samples (3072 to the left and
3072 to the right of the current samples). This is sufficient, at
16kHz sampling frequency, for modeling the samples depen-
dencies between clean (plain) and SSDRC generated speech.
The output from the model is compared with the target through
the absolute sample error loss function which has defined on
Eq.(7). The loss function are optimized with the Adam opti-
mization algorithm using learning rate 0.0001 and momentum
0.9 [9].

The two systems, SSDRC and the suggested wSSDRC are
being compared against intelligibility objective measures and
subjective listening test for attesting the quality of the generated
speech by the two systems.

For the intelligibility, the Speech Intelligibility Index (SII)
has been used. SII captures the intelligibility of a speech sig-
nal in noise by looking at the long term average spectral dis-
tributions of the energy [10]. For our work we used an exten-
sion of the conventional SII by incorporating the temporal char-
acteristics of the noise as well, known as the exSII [11]. All
the signals have been normalized, so they have the same loud-
ness before and after modification. The loudness normalization
have performed with the recent advanced loudness normaliza-
tion scheme [12]. The signals have been mixed with SSN and
SWN type of noises with Signal to Noise Ratios (SNR) in the
range of −5 to 5dB. This tuning of SNR are being done on ref-
erence to the plain speech signals.

For measuring the quality performance of the two systems,
the SSDRC output and wSSDRC have been compared in a pref-
erence test. No added noise have been used. All the signals
have been normalized in terms of loudness as it was mentioned
above. We have conducted a listening test with 10 subject (non-
native English speakers). The subjects have been asked to re-
port back their preferences after listening carefully (using high
quality headphones and in a quit office room) samples from
both systems: SSDRC and wSSDRC. In total there were nine
sets, each having pairs of two utterances one from each system.
Same signals have been used in a Mean Opinion Score (MOS)
subjective listening test with the same participants. The rating
range was 1-bad, 2-poor, 3-fair, 4-good, 5-excellent and partici-
pants were presented with some anchor signals for bad, fair and
excellent. Anchor signals have been obtained by using the clean
plain speech for the excellent rating and two high-pass filtered
versions of the original speech for the other two anchor ratings.

5. Observations and Discussion
The results observed from the objective and subjective exper-
iments on both SSDRC and proposed wSSDRC are presented
here. An example of speech outputs generated by SSDRC and
wSSDRC is provided in Fig. 3. We see that SSDRC and wSS-
DRC signals are very much similar. The main characteristic is
that both produce much lower peak to root mean square (RMS)
ratio signals compared to the original plain speech (upper panel
of Fig 3). This similar time-domain signature of the processed
signals is of course expected as the SSDRC signal is being set
as the target of the Wavenet-like model.

The gain in terms of intelligibility score as measured by
exSII is shown in the Fig. 4 and Fig. 5 for the two noise types
SSN and SWN, respectively. Higher the exSII score better the
performance in intelligibility. From the exSII score it is clear
that the intelligibility of speech processed through both the SS-
DRC and the suggested wSSDRC systems have significantly
improved compared to that of the unprocessed plain speech.
This improvement on intelligibility retained across the SNR
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Figure 3: a)plain speech. b) SSDRC output. c)wSSDRC output

range. It is worth mentioning that in both types of noise the
suggested wSSDRC system can maintain the intelligibility gain
at the same level as that of SSDRC. Furthermore, in some cases
intelligibility prediction of wSSDRC is even slightly higher to
that of SSDRC, when SNR is increasing. For SNR −5dB, we
have also informally listened to the noisy signals from SSDRC
and wSSDRC and we could confirm that for both systems intel-
ligibility was higher than that of the unprocessed plain speech.
We plan to conduct a formal listening test soon.

Table 1: Preference Test(PT) score in percentage

Model PT score
SSDRC 47.3%

wSSDRC 52.7%

On the perceptual quality of the speech produced from SS-
DRC and wSSDRC, we report the results of the preference in
Table 1. While wSSDRC was more preferred than SSDRC, the
difference is not significant. In the MOS quality test SSDRC
have got 3.7 while wSSDRC have got a score of 3.9. The good
improvement of quality in case of wSSDRC might be attributed
to the sample-by-sample approach Wavenet is using, where at
the same time magnitude and frequency information is modi-
fied. SSDRC on contrary, only modifies the magnitude infor-
mation. A further investigation of this cause should be con-
ducted. Also, we will put an effort on improving further the
quality of wSSDRC-based speech. One possible avenue to ex-
plore is that of AM-FM decomposition of speech. Some speech
samples from SSDRC and wSSDRC can be found here 1

6. Conclusions
In this work, we have suggested a data driven approach for lis-
tening enhancement of speech in noise. Specifically, the sug-

1http://www.csd.uoc.gr/˜shifaspv/
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Figure 4: Intelligibility score as exSII for SSN
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Figure 5: Intelligibility score as exSII for SWN

gested system has explored the Wavenet approach for modeling
the intelligibility patterns on the sample domain of speech. The
experimental analysis showed that the suggested wSSDRC sys-
tem has improved the quality of the processed by a state-of-the-
art intelligibility improvement system referred to as SSDRC,
while the intelligibility of the speech generated by wSSDRC
seems to be at the same levels as the one obtained by SSDRC.
The new intelligibility system has the potential to be used as
the final layer in state-of-the art Wavenet-based text-to-speech
synthesizers for synthesizing intelligible synthetic speech. Fur-
thermore, this way of intelligibility boosting might be applied
also in noisy speech. This is our next target.
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