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Abstract
Constructing a viable lipreading system is a challenge because
it is claimed that only 30% of information of speech production
is visible on the lips. Nevertheless, in small vocabulary tasks,
there have been several reports of high accuracies. However,
investigation of larger vocabulary tasks is much rarer.

This work examines constructing a large vocabulary
lipreading system using an approach based-on Deep Neural
Network Hidden Markov Models (DNN-HMMs). We tackle
the problem of lipreading an unseen speaker. We investigate
the effect of employing several steps to pre-process visual fea-
tures. Moreover, we examine the contribution of language mod-
elling in a lipreading system where we use longer n-grams to
recognise visual speech. Our lipreading system is constructed
on the 6000-word vocabulary TCD-TIMIT audiovisual speech
corpus. The results show that visual speech recognition can def-
initely reach 50% word accuracy on large vocabularies. We
actually achieved a mean of 53.83% measured via three-fold
cross-validation on the speaker independent setting of the TCD-
TIMIT corpus using bigrams.
Index Terms: lipreading, deep neural network (DNN)

1. Introduction
Speechreading may be a natural way of silent speech com-
munication between humans but, compared to the audio sig-
nal, the video signal is impoverished. Various works includ-
ing [1, 2, 3, 4] estimate that only about 30% of speech produc-
tion information is visible on the lips as the vocal cords, nasal
cavity, oral cavity are mostly hidden. This leads to homophe-
neous words which look the same on the lips but sound different
(words such as bat /bæt/ and mat /mæt/ are often perceived to
be identical by lip readers).

Recent advances in computer vision, speech processing and
machine learning ought to feed-in to better lipreading systems.
Of these advances, deep-learning is the most prominent. In a
small vocabulary task, for example, lipreading systems via con-
volutional neural network (CNN) features and attention-based
encoder-decoders achieved word accuracies of 97% [5] on the
GRID dataset [6]. An end-to-end lipreading system using Long-
Short Memory (LSTM) networks on the OuluVS2 [7] dataset
achieved 84.5% phrase accuracy [8]. However, in larger vo-
cabulary tasks, the accomplishment of lipreading is much lower
even if a complex deep learning approach has been employed.
In the MV-LRS task [9], the word accuracy of lipreading is re-
ported as 43.6% in frontal view, and 37.2% in profile view using
sequence-to-sequence LSTMs. In the LRS task [5], a lipread-
ing system achieved 49.8% word accuracy using a system called
Watch Attend and Spell (WAS) which involves CNNs and mul-
tiple LSTMs.

In this work, we employ hybrid DNN-HMMs (as in [10,
11, 12]) but here, the visual feature is based-on a Deep AutoEn-

coder (DAE) [13, 14, 15]. The results are further processed
using an n-gram language model.

2. Data
The most used of the large-vocabulary datasets is TCD-
TIMIT [16] which a publicly-available audio-visual continuous
speech corpus that has a 6019 word vocabulary recorded from
59 talkers (the volunteer set) and three professional lip speakers
comprising over seven hours of speech data. This is a read-
speech corpus captured in a studio environment. The video is
recorded in two views: frontal and 30◦ view. We use the only
frontal view from the volunteer set. Each talker reads 98 sen-
tences selected from TIMIT. We also follow the provided lists
of non-overlapping utterances for training and evaluation in two
scenarios: speaker-dependent (SD) and speaker-independent
(SI) scenarios. In SD where training and test speakers are over-
lapped, there are 3752 utterances for training and 1736 utter-
ances for evaluation. In SI, the training set contains 3822 utter-
ances of 39 speakers, and the evaluation set contains 1666 utter-
ances of 17 speakers. Statistics of the volunteer set are available
in Table 1.
Table 1: Statistics from the volunteer-speakers dataset of TCD-
TIMIT corpus [16].

TCD-TIMIT statistics Volunteer set

Total number of speakers 59
Total number of sentences 5,488
Total number of unique phonemes 38
Total number of phonemes tokens 213,115
Total number of unique words 5,958
Total number of word tokens 47,503
Average number of phonemes per sentence 38.83
Average number of words per sentence 8.65
Average number of phonemes per word 4.48

3. Lipreading system
Our lipreading systems are developed on the Kaldi toolkit [18].
We build lipreading systems via a weighted finite state trans-
ducer (WFST) decoder where we use hybrid DNN-HMMs [17]
instead of GMM-HMMs. The WFST decoder is comprised of
HMMs (H), phoneme context-dependency (C), lexicon model
(L), and n-gram language model (G), called collectively the
HCLG decoding-graph. To decode lipreading, the first-pass de-
coder generates a word lattice containing a possible set of words
that matched the input lip signal; then the final result comes
from the lattice re-scoring via a language model. We utilise the
Deep autoencoder (DAE) method to extract a static feature from
a cropped lip image. Deep autoencoders are feed-forward neu-
ral networks that learn non-linear mapping to reconstruct the in-
put with minimum errors. We then transform the visual features
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Figure 1: Feature extraction and feature processing methods in
the lipreading system.

(a)

(b)

(c)

Figure 2: Examples of the original lip ROIs (a) taken from
speaker 02M in the TCD-TIMIT corpus and its reconstruction
via (b) 30-dimensional DAE, (c) 44-dimensional DCT.

to represent linguistic units using LDA/MLLT, and we also use
FMLLR to transform feature space for each specific speaker.

3.1. Deep autoencoder and feature processing

Our visual feature is an appearance-based so extracted from
the greyscale pixels of lip regions-of-interest (ROIs) which are
available in the TCD-TIMIT corpus. The deep autoencoder
(DAE), an unsupervised technique, reduces the 64 × 128 pix-
els grey-scale lip ROI to a 30-dimensional feature vector. The
network structure is separated into two parts: decoder and en-
coder. The layer in the middle which usually contains the small
number of units, i.e. 30 hidden-units, is a low-dimensional rep-
resentation that is trained to yield the best reconstruction of the
output. The DAE network, shown in Figure 1, composes of 11
hidden layers where the units in the encoder layer are (1024,
512, 256, 128, 64) and the units in the decoder layer are (64,
128, 256, 512, 1024) and 30 units in the code layer. We use
ReLU activation function in each unit in the hidden layers and
use linear unit in the code layer. The DAE model is trained on
480k images obtained from a training set and optimised with the
mean square error (MSE) loss-function via Adam optimisation
algorithm [19] using 50 epochs and mini-batch size 256. Recon-
structions of lip ROIs from the 30-dimensional DAE feature, are
shown in Figure 2 (b). They are higher image quality than re-
construction from the 44-dimensional discrete cosine transform
(DCT) feature (c) as presented in TCD-TIMIT baseline [16].

We use three feature processing steps: (1) z-score normal-
ization, (2) Linear discriminant analysis and maximum like-
lihood linear transform (LDA/MLLT), (3) and Feature space
maximum likelihood linear regression (FMLLR) [20] transfor-
mation. Previous reports in lipreading use different sizes of
LDA context window i.e. ±3 [10, 21], ±7 [22, 11], and 40
dimensions were retained. In LDA/MLLT, we use dynamic in-
formation covering 21 frames window (stacking ±10 frames)
and retain 25 dimensions since it obtains the best result in our

preliminary test. The FMLLR feature also retains 25 dimen-
sions.

4. Visualizing visual speech features
We analyse visual representations using t-Distributed Stochastic
Neighbor Embedding (t-SNE) visualisation techniques, intro-
duced by [23]. T-SNE is a tool for visualising high-dimensional
data. It reduces feature dimension where it groups the simi-
larity data points and distances between the dissimilarity, by
computed the similarity matrix of data points and convert-
ing it into a joint probability which is then minimised via the
Kullback-Leibler divergence between the joint probabilities of
low-dimensional and original high-dimensional data. To ob-
serve the distribution of features, we use t-SNE to visualise
the 30-dimensional DAE visual feature and the 39-dimensional
MFCC acoustic feature. There are 2841 data points of utter-
ance Don’t ask me to carry an oily rag like that extracted from
six speakers: three male and three female.

4.1. Understanding visualization output via Fisher-ratio
(F-ratio) analysis

We measure the t-SNE output by computing the magnitude of
the class discriminant ratio using Fisher’s Ratio analysis by con-
sidering the speaker class label and a linguistic class label. The
class discriminant ratio is the ratio of the between-classes vari-
ance and the within-classes variance. The class discriminant
ratio can be computed by

Class F − ratio =
SB
SW

, (1)

where SB is the between-classes covariance matrix and SW is
the within-classes covariance matrix. The definition of covari-
ance matrices are:

SB =
∑

c

(µc − x̄)(µc − x̄)T , (2)

SW =
∑

c

∑

iεc

(xi − µc)(xi − µc)
T , (3)

where µc refers to the mean of each class and xi refers to each
data point. This F-ratio identifies the goodness of the data clus-
tered regarding the provided class label. In our case we also use
this ratio to identify whether the data are clustered by speaker
similarity or linguistic similarity. For instant, if the F-ratio of
speakers is higher than the F-ratio of linguistic units, we assume
that the feature represents speaker similarity and vice versa.
Note that we compute three F-ratios using speaker label (spk),
and two linguistic labels which are word label (w) and phonetic
label (ph).

4.2. Comparison of visual and auditory representations.

Figure 3 illustrates the difference of the original representation
between the visual and acoustic speech features. In Figure 3
(a) and (b) the data points are labelled (with colours) by speak-
ers, while in (c) and (d) the data points are labelled (coloured)
by words. In these data, variations in the environment, and
phonological patterns are controlled so variation is attributable
to speaker identity. The acoustic and visual features look quite
different – in the visual we have clusters from different speaker
identities, but the acoustic features have largely removed iden-
tity as we can see from the mixed-colour clusters. This is con-
firmed by the speaker F-ratio (3.56). In other words, features
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DAE visual feature MFCC feature DAE visual feature MFCC feature

Speaker F-ratio=3.56 Speaker F-ratio=0.08 Word F-ratio=0.03 Word F-ratio=1.55
Phonetic F-ratio=0.03 Phonetic F-ratio=2.38

Figure 3: T-SNE plots of visual speech and auditory speech features coloured by speakers (a,b) and words (c,d). The class F-ratios of
speaker, word and phonetic are provided underneath the plot.
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Figure 4: Word accuracy (%) of speaker-dependent (red) and
speaker-independent (blue) lipreading systems via DNN-HMMs
models. Results are obtained from DAE feature (circle) and
DCT feature (triangle) as a function of feature transformation
methods with ±1 standard error. Note that we show DCT re-
sults as for a reference.

extracted from lip ROIs are highly speaker dependent. The red
points in (c) and (d) show silence which is well-clustered in
the acoustic and, again, separated by identity in the visual. In
the acoustic data, a slight effect of speaker dependency can be
found in the non-silence classes.

5. Experiments
The DNN-HMM visual speech models are trained on six hid-
den layers and with sigmoid non-linearity 2048 units per layer.
We initialise the DNN parameters using the Restricted Boltz-
mann Machines (RBMs) pre-training and optimise via the stan-
dard cross-entropy (CE). For each input feature type, we splice
±5 consecutive frames as dynamic features covering 11 frames
context. We use the constrained time alignments that generated
from visual-only GMM-HMMs with speaker adaptive training
system (SAT) [24]. The evaluation task is the large vocabulary
continuous speech using the TCD-TIMIT corpus. There are two
scenarios: speaker dependent (seen speakers), and speaker in-
dependent (unseen speakers). We report the word accuracy on
the mean of three-fold cross-validation (with ±1 standard error)
where we use the recommended set as the first-fold and we pre-
pare another two-fold by retaining the similar proportion. The
DAE feature is created from the training images for each partic-
ular cross-validation set and scenario.

5.1. Effect of feature preprocessing

This experiment investigates the effect of feature transformation
in DNN-HMM training. We utilize three feature transforma-
tion methods: (1) z-score normalization and deltas (∆ + ∆∆);
(2) phonetic class discriminant feature via LDA/MLLT and (3)
speaker-transformed features via FMLLR. In Figure 4, there is
a clear trend of increasing word accuracy from each step of fea-
ture transformation. This trend applies to both DAE and DCT
features. The original untransformed features have the low-
est performance in both scenarios. The dependency of speaker
identity (noted in Figure 3) is evident in the difference in per-
formance between the SI and SD systems which is around 15%.
Applying feature normalisation and deltas is highly beneficial
to both SD and SI word accuracy, especially with DAE features
where the word accuracy improves by almost 20% compared
to the original results. Next, we found that LDA/MLLT and
FMLLR help minimise the speaker identity effect and enhance
word accuracy which is shown by the small gap between the
performance on seen and unseen speakers. The explanation for
the LDA/MLLT is that it transforms the feature space to sat-
isfy the class discrimination which indirectly reduces speaker
identity. The FMLLR is directly proposed to solve the speaker
identity effect. Overall the highest word accuracy of speaker-
independent lipreading is 46.69% using the DAE feature with
the FMLLR transformation method.

This situation is further illustrated in Figure 5 which shows
the t-SNE plot at various stages in the system. In (a) is show the
visualisation before any normalisation, so we see the speaker
identity clusters. In (b) the effect of normalisation and deltas
is to slightly reduce the effects of speaker identity. In (c) and
(d) which show the effect of LDA/MLLT and FMLLR the iden-
tity clusters have disappeared and word clusters are emerging.
The effect of the DNN is illustrated in Figure 5 (e) and (f)
which shows, as we move up the network the words become
more strongly defined which can also be seen in the F-ratios.

5.2. Results of sequence discriminative training via sMBR

We employ state-level minimum Bayes risk (sMBR) sequence
discriminative training method [25] to improve visual speech
modeling, as it yielded 51.29% of SI word accuracy in lipread-
ing in TCD-TIMIT corpus [11]. In Table 2, we achieve 53.83%
word accuracy in the unseen scenario which is a 7.14% im-
provement from the DNN-HMMs. This is 2.54% higher than
the earlier reported SI result based on the Eigenlips feature.
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(a) Deep autoencoder (30-D) (b) Normalisation and deltas (90-D)
F-ratio spk=3.56; w=0.03; ph=0.03 F-ratio spk=1.77; w=0.06; ph=0.06

-100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

SIL

DON'T

ASK

ME

TO

CARRY

AN

OILY

RAG

LIKE

THAT

-150 -100 -50 0 50 100 150
-100

-50

0

50

100

150

SIL

DON'T

ASK

ME

TO

CARRY

AN

OILY

RAG

LIKE

THAT

(c) LDA/MLLT (25-D) (d) LDA/MLLT FMLLR (25-D)
F-ratio spk=0.62; w=0.19; ph=0.09 F-ratio spk=0.50; w=0.26; ph=0.16
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(e) DNN layer-1 (2048-D) (f) DNN layer-6 (2048-D)
F-ratio spk=0.28; w=0.71; ph=0.55 F-ratio spk=0.13; w=0.91; ph=0.61

Figure 5: T-SNE plots of DAE with various transformation
methods and a representation inside a DNN layer presented
with three levels of F-ratio - speaker (spk), word (w), and pho-
netic (ph).

Table 2: DAE lipreading results using DNN-HMMs and DNN-
HMMs with 10-iterations sMBR training.

sMBR training Word accuracy (%)
SD testset SI testset

Without sMBR 50.39 46.69
With sMBR 57.36 53.83

5.3. Effect of language modelling

A language model (LM) can be used to constrain word com-
binations to form legitimate sentences or sentence fragments.
It is usually learnt from the training text. We use five word n-
gram language models: uniform prior; unigram; bigram (mainly
used); trigram and 4gram. The term uniform prior means that
we use no language model (a unigram model with uniform prob-
abilities). The results in Table 3 illustrate that the n-gram or-
der of language modeling contributes to noticeable changes in
lipreading performance. Lipreading performance gets below
10% without an LM, but the word accuracy increases signifi-
cantly to about 68% when we use trigrams and 4grams. These
observations are consistent with what is known about human
lipreaders who make considerable use of their linguistic and do-
main knowledge. We also evaluate if the language model dom-
inates the lipreading performance by decoding a random noise
vector. Results in the guessing column indicate that language
modeling has successfully increase lipreading accuracy only in
combination with a suitable associated visual input signal.

Table 3: Word accuracy (%) of lipreading system decoded with
difference language models.

Word-based n-gram
language model (LM)

Word accuracy (%)
SI testset Guessing

uniform prior LM 6.24 1.63
unigram LM 10.69 2.04

(currently use) bigram LM 53.83 2.02
trigram LM 67.69 2.03
4gram LM 68.45 2.02

6. Discussion and conclusions
Among other things, this study demonstrates that lipreading
systems can be built via the conventional techniques of acoustic
speech recognition system based-on DNN-HMMs and sMBR
training. In a 6000-word vocabulary task, we achieved 53.83%
word accuracy in the speaker independent scenario using DAE
features and the FMLLR transformation method. This is the
best known accuracy on the TCD-TIMIT data. The results and
the visualization of each feature indicate that feature processing
steps are relevant to gain speaker-independent lipreading accu-
racy because they reduce the influence of speaker identity found
in the original space of the DAE feature.

Table 4: Examples of challenging to predict words and easy to
predict words

Examples of the difficult to predict words (less than 10% correct)
High frequency words Low frequency words

A (ah)
IT (ih t)
I (ay)
IN (ih n)
IS (ih z)
YOU (y uw)
HE (hh iy)
DOES (d ah z)
THEM (dh eh m)
AT (ae t)

YET (y eh t)
TELL (t eh l)
DESSERT (d ih z er t)
ORDER (ao r d er)
DOCTOR (d aa k t er)
SURE (sh uh r)
MUSTARD (m ah s t er d)
CHURCH (ch er ch)
MARINE (m er iy n)
HOUSE (hh aw s)

Examples of the easy to predict words (more than 90% correct)
High frequency words Low frequency words

SHE (sh iy)
CAN (k ae n)
YEAR (y ih r)
WOULD (w uh d)
OILY (oy l iy)
SMALL (s m ao l)
BROTHER (b r ah dh er)
MAKES (m ey k s)
SELDOM (s eh l d ah m)
OVER (ow v er)

SHORTAGE (sh ao r t ah jh)
BECOME (b ih k ah m)
STEEP (s t iy p)
BOB (b aa b)
REDWOODS (r eh d w uh d z)
OUTDOORS (aw t d ao r z)
BRIGHT (b r ay t)
WIRE (w ay er)
LET (l eh t)
INCREASES (ih n k r iy s ah z)

Table 4 gives example words which are relatively easy or
difficult to lipread. There are two effects at play: firstly there
is homopheniosity or the confusion of words because they have
identical shapes on the lips and secondly there is the observa-
tion that certain sounds are more visible on the lips than oth-
ers. Words such as “brother” and “makes” have bilabials at the
start of the word which makes them easier to spot than “at”
or“he”. Longer words are easier to lip-read than shorter ones,
and the homophene effect means the classifier has to guess from
a considerable number of alternatives (which might explain why
some of the low-frequency difficult words still contain bilabials
– albeit weakly enunciated bilabials such as found in “marine”
or “mustard”).

Although accomplishment of computer lipreading is depen-
dent on the degree of n-gram language model, we observe that
language modelling does not dominate the entire lipreading de-
coder a fact verified by poor the results of decoding the random
signal.
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