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Abstract
A robust speaker recognition system should be able to recog-
nize a speaker despite all the possible variations in speaker’s
speech. A common variation of the neutral speech is speech-
laugh, which occurs when a person is speaking and laughing,
simultaneously. In this paper, we show that speech-laugh signif-
icantly degrades the performance of an i-vector based speaker
recognition system. Further, we show that laughter and neutral
speech contain complementary speaker information, which can
be combined to improve the performance of the speaker recog-
nition system for speech-laugh scenarios. Using AMI meeting
corpus database, we show that by including neutral speech and
laughter in enrollment phase, the performance of the system in
the speech-laugh scenarios can be relatively improved by 36%
in EER.
Index Terms: Laughter, speech-laugh, speaker recognition

1. Introduction
The flexibility of the human speech production system allows
production of several variants of neutral speech, such as speech-
laugh, depending on the emotional and physical state of the
speaker along with non-speech sounds such as laughter, cry-
ing, etc. These variations, being produced by the speech pro-
duction system of the same speaker, are likely to carry certain
speaker-specific information. However, it is not immediately
clear whether this speaker-specific information is the same as
the speaker-specific information represented by neutral speech.

Speaker recognition refers to the task of identifying the
speaker using speech as the only cue [1]. In recent years,
speaker recognition systems have shown significant improve-
ment in performance making them more viable for commercial
applications. Current state-of-the-art speaker recognition sys-
tems employ i-vector-based approaches, where the feature vec-
tors representing the speech signal are characterized by low-
dimensional fixed length vectors called identity-vectors or i-
vectors [2], [3], [4]. These i-vectors are obtained by projecting
the speech signal onto a subspace T , referred to as “total vari-
ability space”, which contains both speaker and channel vari-
abilities, simultaneously [2]. Approaches based on i-vectors are
well established as they have shown a significant improvement
in speaker recognition performances. However, the effect of the
variations of the neutral speech on i-vector-based systems have
not been reported. More explicitly, there is a need to identify
if the neutral speech of a speaker is sufficient to capture the
speaker-specific characteristics completely, irrespective of the
variations in the speech produced by the speaker in natural day
to day conversations. This information is essential for develop-
ing robust speaker recognition systems.

Only a few studies have analyzed the effect of different
non-speech sounds such as breath, whistle, etc., on the perfor-
mance of speaker recognition systems [5], [6], [7]. It is evident
from earlier studies that the performance of the speaker recog-
nition system trained using only neutral speech of the speaker

degrades, if these non-speech sounds are a part of the testing
phase of the system [6], [7]. Most of these studies considered
traditional Gaussian mixture models with universal background
model (GMM-UBM) for their study.

In this paper, we study the effect of speech-laugh on the
state-of-the-art i-vector speaker recognition system. While ear-
lier studies have focused on only the non-speech sounds (such
as breaths, whistle etc.), this study focuses on the non-speech
event co-occurring with speech (i.e. speech-laugh: laugh co-
occurring with speech). This is important, since in natural
conversations, a significant part of the non-speech sounds co-
occur with speech to produce variants of neutral speech such
as speech-laugh, breathy speech, etc., [8], [9], [10]. The main
objectives of this analysis are twofold:

1. To investigate whether the i-vectors extracted from the
neutral speech of a speaker are robust to the variations in
speech produced by the speaker.

2. To analyze the importance of including non-speech
sounds, such as laugh, along with neutral speech in the
enrollment phase of speaker recognition, when variants
of neutral speech are present in the testing phase.

To achieve these objectives, laughter (a non-speech sound)
and speech-laugh (a variant of neutral speech) segments pro-
duced by the speaker are considered to evaluate the perfor-
mance of speaker recognition system developed using only neu-
tral speech. Further, the performance of speaker recognition
system, particularly when tested with speech-laugh, is analyzed
when laughter sounds collected from the speaker are included
in the enrollment phase. These systems are evaluated on neu-
tral speech, laughter and speech-laugh of the speaker to ascer-
tain the presence of any complementary speaker-specific infor-
mation provided by laughter. Studying the effect of laughter
and speech-laugh is important, as laughter is one of the most
common non-speech sound which occurs very frequently [11],
and in natural conversations, more than 50% of these laughter
sounds happen to be speech-laughs [12].

The organization of the paper is as follows. The approach
followed for analysis is explained in Section 2. Section 3 sum-
marizes the dataset and the i-vector-based speaker recognition
system considered. Experimental results are given in Section 4.
Summary along with conclusions are given in Section 5.

2. Background and Proposed Approach
Analysis is performed by considering neutral speech (NS),
laughter (L) and speech-laugh (SL) produced by the speakers.
Neutral speech (NS) refers to the normal/regular speech of the
speaker, which carries mostly linguistic information.
Laughter (L) is a non-speech sound, typically produced by a
series of sudden bursts of air through the vocal tract system
[13], [14], [15]. Laughter does not carry any linguistic infor-
mation but might provide important speaker-specific cues.
Speech-laugh (SL) refers to the segments of speech, where
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Figure 1: Spectrograms obtained for (a) neutral speech, (b)
laughter and (c) speech-laugh, respectively.

laughter co-occurs with neutral speech [16], [17]. Speech-laugh
exhibits characteristics of both laughter and neutral speech, but
it is very distinct from both, laughter and neutral speech [12],
[17], [18]. Hence, speech-laugh forms a separate class, which
carries both, linguistic and non-linguistic information [18].

The spectral features obtained from neutral speech (NS),
laughter (L) and speech-laugh (SL) form a continuum, with
laughter exhibiting higher formant frequencies (particularly,
first formant frequency) followed by speech-laugh and then
neutral speech [17], [19]. This can be observed from the spec-
trograms obtained for neutral speech, laughter and speech-laugh
samples of the same speaker as shown in Fig. 1. This variation
in formant frequencies, which might carry speaker-specific in-
formation [20], can affect the performance of the speaker recog-
nition systems trained on only neutral speech but tested on more
natural speech which also consists speech-laugh and laughter
segments. The effect of such variations on speaker recognition
system is analyzed in this study.

The approach followed for the analysis is depicted in Fig.
2. It can be observed from Fig. 2 that apart from neutral speech,
laughter data collected from the speakers is also included in the
enrollment phase of the speaker recognition system. For anal-
ysis, four different i-vector-based systems are developed: first
system using only neutral speech (NS), second system using
only laughter (L) and the third one is developed considering
both, neutral speech and laughter (NS ∪ L) of the speakers as
enrollment data. Further, a fourth system obtained by late fusion
(of the output scores of the first and the second systems) is also
considered to analyze the variation in speaker-specific informa-
tion provided by laughter and neutral speech. The effect of in-
cluding laughter in the enrollment phase is analyzed by evalu-
ating the performance of these systems on speech-laugh (which
is not used in the enrollment phase of any system) of the speak-
ers. This analysis is significant for two main reasons. First, it
shows that a variant of neutral speech (i.e. speech-laugh) can be
handled by simply including a non-speech event (i.e. laugh) in
the enrollment phase. Second, laugh may be easier to generate
during enrollment than speech-laugh as subjects may not speak
while laughing to produce speech-laugh.

Figure 2: Block diagram of the approach followed for analysis.

3. Experimental details
3.1. Database details

For this analysis, GMM-UBM and i-vector statistics as pro-
vided in the Voice biometry standardization (VBS) [21] toolkit
are used. In VBS toolkit, GMM-UBM with 2048 components
was trained using NIST SRE 2004 − 2008 data (≈ 1156.03
hours of data) and the T matrix required for i-vector extrac-
tion was trained using Fisher English (Part 1 and 2), NIST SRE
2004−2008, and Switchboard corpus (Phase 2, Phase 3, cellu-
lar part 1 and cellular part 2) which totals to 9010.23 hours of
data. But standard speaker recognition corpus such as NIST
SRE does not include speech transcripts, especially for non-
speech sounds. Hence, the enrollment and the test i-vectors
used in this analysis are obtained using AMI meeting corpus
[22].

AMI meeting corpus is a multi-modal dataset consisting
of 100 hours of meeting recordings. Each meeting includes
four speakers discussing spontaneously on a given topic in En-
glish. Most of the speakers are non-native English speakers,
thus providing a high degree of variability in speech. Each
speaker’s audio was recorded using individual headset con-
denser microphones and lapel microphones. We used the data
collected through headset condenser microphones as speech of
the considered speaker is profound. The corpus is labeled at
word level. Further, the laughter segments produced by the
speaker are separately labeled along with their timestamps. For
this analysis, we considered 100 speakers (60 female and 40
male) whose recordings have significant amount of laughter and
speech-laugh content.

3.2. Data Organization

For the purpose of analysis, we organized the audio corpus into
4 different datasets (see Table 1). The speech of the speaker,
in the corpus, is marked as neutral speech (NS), laughter (L)
and speech-laugh (SL). It can be observed from Table 1 that
enrollment sets (namely, ES1, ES2 and ES3) of DSET1 (NS),
DSET2 (L) and DSET3 (NS ∪ L) are used in enrollment phase of
the speaker recognition system, whereas test sets of all datasets
(i.e., TS1 through TS4) are used in the testing phase. The en-
rollment set in DSET3 (namely, ES3) consists a total of 85 ut-
terances (70 NS utterances and 15 L utterances) each of 3.5 sec
to 4 sec in duration. But every utterance in TS3 contains both
NS and L, where the proportion of laughter (L) typically varies
from 20% to 50%. It is to be noted that SL is used only in the
testing phase (TS4), but not in the enrollment phase.
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Table 1: Dataset organization details (Enrollment (ES) and Test (TS) refer to Enrollment set and Test set, respectively).

# Utterances/speaker
Dataset Contents Enrollment (ES) Test (TS) Duration (sec)
DSET1 Neutral speech (NS) ES1 = 80 TS1 = 25 3.5-4
DSET2 Laughter (L) ES2 = 20 TS2 = 10 3.5-4
DSET3 Neutral speech and laughter (NS ∪ L) ES3 = 85 TS3 = 10 3.5-4
DSET4 Speech-laugh (SL) – TS4 = 10 3.5-4

3.3. System description

The i-vector-based speaker recognition systems considered for
analysis are implemented using the VBS [21] toolkit. Figure 3
shows the schematic of the system implementation using VBS
and consists of the audio, voice activity detection (VAD), fea-
ture extraction, i-vector extraction and post processing. We use
probabilistic linear discriminant analysis (PLDA) as the metric
to measure the performance of the speaker recognition system.
We briefly describe the blocks in VBS system [21] as used in
our experiments.

Audio: The audio data considered in the enrollment phase
(see Enroll Audio in Fig. 3) consists of NS and L sounds of
each speaker. Whereas the audio data in the testing phase (see
Test Audio in Fig. 3) consists of NS, L and SL. All the audio
samples are down sampled to 8 kHz and are in 16-bit PCM
format as required by the VBS.

Voice activity detection (VAD): VAD is used prior to fea-
ture extraction to remove the silence and low signal-to-noise ra-
tio (SNR) regions in the audio sample. In this analysis, VAD is
performed using the VOICEBOX toolkit [23]. It is to be noted
that most of the speech-laugh segments are voiced [9] and can-
not be eliminated by using a conventional VAD.

Feature extraction: The audio signals are represented us-
ing mel-frequency cepstral coefficients (MFCCs), which are
widely used in i-vector-based speaker recognition systems [2],
[3]. MFCCs are extracted using 25 msec Hamming window
with 10 msec forward shift. MFCCs are computed by using 24
mel-filter banks and limiting the bandwidth to frequency in the
range of 125 Hz - 3800 Hz. Every frame is represented using
20 coefficients (first 19 MFCCs along with the 0th coefficient).
This 20-dimensional feature vector is mean and variance nor-
malized using a 1 sec sliding window. Subsequently, the delta
and the double delta coefficients are computed to form a 60-
dimensional feature vector to represent each frame.

i-vector extraction: To obtain a low-dimensional fixed-
length i-vector-based representation of the sequence of feature
vectors, the GMM-UBM and the i-vector statistics (total vari-
ability space (T )) are necessary. In this analysis, the GMM-
UBM-based i-vectors are extracted using the GMM-UBM and
T matrix statistics released by VBS. The gender-independent
universal background model (UBM) with 2048 components and
the total variability space T of 600-dimension were trained us-
ing the data as explained in Section 3.1.

i-vector post-processing: The i-vectors of 600-dimensions
obtained for each audio sample are reduced to 200-dimensions
using linear discriminant analysis (LDA) [2], [24]. Then these
i-vectors are further normalized using within-class covariance
matrix [24]. Both, LDA and within-class covariance matrix are
provided by VBS and are trained on the same data that is used
for T matrix enrollment. In this analysis, the speaker templates
(namely, i-vectors corresponding to each speaker) are generated
separately for the three considered cases (namely, NS, L and NS
∪ L) during the enrollment phase, and an i-vector is obtained for
each audio sample during the test phase.

Figure 3: Block diagram of i-vector-based speaker recognition
system implementation.

Table 2: Details of the considered speaker recognition systems.

System Training set Test sets
SYSTEM1 ES1 (NS) TS1, TS2, TS3, TS4
SYSTEM2 ES2 (L) TS1, TS2, TS3, TS4
SYSTEM3 ES3 (NS ∪ L) TS1, TS2, TS3, TS4

SYSTEM4 Fusion of TS1, TS2, TS3, TS4
SYSTEM1 and SYSTEM2

PLDA: To compare the enrollment i-vectors to the test i-
vectors for speaker recognition, PLDA is used [25], [26]. PLDA
is a special case of joint factor analysis (JFA) with single Gaus-
sian component, but is used in the i-vector space. Given a pair
of i-vectors, PLDA computes the log-likelihood score for the
same-speaker and the different-speaker hypothesis [27]. This
PLDA score is used to evaluate the speaker recognition systems.

4. Experimental results
The performance of the i-vector-based speaker recognition sys-
tems (see Table 2) is evaluated in terms of Equal Error Rate
(EER); lower EER value indicates better performance of the
system. The EER (in %) obtained for the four considered sys-
tems, namely, SYSTEM1 (trained on ES1 i.e., neutral speech
only), SYSTEM2 (trained on ES2 i.e., laughter only), SYSTEM3
(trained on ES3 i.e., neutral speech and laughter), along with
SYSTEM4 (fusion of SYSTEM1 and SYSTEM2) when tested on
all the test datasets (TS1 through TS4) are shown in Table 3
(refer to Table 1 for dataset details).

SYSTEM4 is obtained by late fusion of the PLDA scores
obtained by SYSTEM1 and SYSTEM2. The fusion of the PLDA
scores is performed as shown in Eq. (1),

PLDAS4 = (α×PLDAS1) + ((1−α)×PLDAS2), (1)

where PLDAS1 and PLDAS2 represents the PLDA scores of
SYSTEM1 and SYSTEM2, respectively and α is a weight (which
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gives higher importance to one system and lower importance to
other system. α = 0.5 means both systems contributes equally
for the final output) whose value ranges from 0−1 (see Table 4).
EER for SYSTEM4 is computed by using the PLDAS4 scores
obtained on the test set. The overall best performance (in EER)
obtained by SYSTEM4 (i.e., at α = 0.5) is provided in Table 3.
As can be observed from Table 3

• The matched scenarios (denoted by (*) in Table 3) al-
ways work better than the mismatched condition, which
is along the expected line.

• When tested on only neutral speech (TS1), SYSTEM1,
SYSTEM3 and SYSTEM4 performs better than SYS-
TEM2, which is trained only on laughter sounds. Sim-
ilarly, when tested on utterances with only laughter
(TS2), SYSTEM2, SYSTEM3 and SYSTEM4 performs
better than SYSTEM1. This shows that the i-vector-based
speaker representation obtained from the neutral speech
(NS) of a speaker differs from that of laughter, signifying
the variation in speaker-specific information exhibited by
neutral speech and laughter.

• When tested on speech-laugh (TS4), the performance of
SYSTEM1 (EER = 16.00%) degrades compared to its
performance on test sets with neutral speech i.e., TS1 and
TS3. Also, the performance of SYSTEM2 (EER = 15.61)
degrades when tested on speech-laugh, compared to its
performance on test sets with laughter i.e., TS2. But, the
performance of both SYSTEM1 and SYSTEM2 is very
close on TS4. This shows that speech-laugh exhibits
characteristics of both, laughter and neutral speech, but
also is distinct from both laughter and neutral speech.
Better performance of SYSTEM2 compared to SYSTEM1
on TS4 may be attributed to the small laughter segments
occurring within speech-laugh segments.

• SYSTEM3 performs better than SYSTEM1 and SYSTEM2
on test sets TS1 and TS3 . Further, when tested on
speech-laugh (TS4, which is not present in any enroll-
ment set), SYSTEM3 (EER = 11.73%) performs better
than SYSTEM1 (EER = 16.00%) and SYSTEM2 (EER =
15.61%). Better performance of SYSTEM3 compared to
SYSTEM1 on TS1 might be attributed to the additional
complementary information provided by laughter which
better handles the variations in neutral speech.

• SYSTEM4 which is fusion of SYSTEM1 and SYSTEM2,
outperforms all other systems on the test sets, TS3 and
TS4. In particular, when tested on speech-laugh (TS4),
SYSTEM4 (EER = 10.16%) outperforms SYSTEM1 by
5.84%, SYSTEM2 by 5.45% and SYSTEM3 by 1.57% in
EER. This shows that the speaker-specific information
captured by SYSTEM1 and SYSTEM2 when fused may
be able to better represent the speaker-specific informa-
tion embedded in speech-laugh.

• When tested on laughter (TS2), SYSTEM4 (EER =
11.82) outperforms SYSTEM3 by 7.66%. This may be
attributed to the higher proportion of neutral speech in
train set ES3 compared to laughter, whereas for SYS-
TEM4, equal weightage is given to both neutral speech
(SYSTEM1) and laughter (SYSTEM2).

The better performance of SYSTEM4 and SYSTEM3 when
tested on TS4 (i.e., speech-laugh) compared to SYSTEM1 and
SYSTEM2, shows that laughter and neutral speech might carry

Table 3: EER (in %) obtained for the systems on different
datasets. NS, L and SL refers to Neutral speech, laughter and
speech-laugh, respectively, and SYST refers to SYSTEM. (*)
denotes matched train and test conditions.

SYST1 SYST2 SYST3 SYST4
Test-set (ES1) (ES2) (ES3) (Fusion)

TS1 (NS) 2.95* 23.78 2.93 4.18
TS2 (L) 29.37 9.17* 19.48 11.82

TS3 12.93 18.09 7.15* 6.77
(NS ∪ L)
TS4 (SL) 16.00 15.61 11.73 10.16

Table 4: EER (in %) obtained for SYSTEM4 for different α

α TS1 TS2 TS3 TS4
0 23.78 9.17 18.09 15.61

0.1 18.09 10.35 17.94 13.81
0.2 12.54 10.87 13.85 12.26
0.3 9.04 11.09 10.47 11.61
0.4 5.92 11.63 9.10 10.91
0.5 4.18 11.82 6.77 10.16
0.6 3.49 15.60 5.61 10.28
0.7 3.10 19.43 6.79 10.74
0.8 2.81 22.70 8.36 12.00
0.9 2.84 26.65 10.20 13.78
1 2.95 29.37 12.93 16.00

complementary speaker-specific information which when com-
bined, helps in improved speaker recognition performance on
speech-laugh.

Table 4 shows the performance of SYSTEM4 by varying α
in Eq. (1) from 0 − 1. As α move towards 1, the performance
of SYSTEM4 improves on neutral speech (TS1), and degrades
on laughter (TS2), as expected. But an improved performance
on TS3, TS4, and an improvement in overall system perfor-
mance is observed whenα is close to 0.5 (i.e., α = 0.4, 0.5, 0.6).
This shows that laughter and neutral speech carry complemen-
tary speaker-specific information, and also signifies the impor-
tance of this speaker-specific information for improved speaker
recognition performance on speech-laugh.

5. Conclusions
Natural conversations between people have significant amount
of non-speech events, such as laughter, which co-occur with
speech. A practical speaker recognition system needs to be able
to recognize a speaker in these scenarios. In this paper, we
show that the i-vector-based speaker recognition system trained
on neutral speech performs poorly when it encounters speech-
laugh in the test utterances. We also show that laughter and
neutral speech contain complementary speaker-specific infor-
mation, which can be combined to deal with speech-laugh. To-
wards this end, we propose the use of laughter along with neu-
tral speech in the enrollment data. This can be accomplished in
two ways. One, by simply pooling laughter and neutral speech
data to train the enrollment i-vector or two, by training sepa-
rate i-vectors for neutral speech and laughter and fusing their
PLDA scores. Currently, we are extending this study to other
non-speech events. We are also studying better ways of score-
fusion, which can improve the performance of the system.
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