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Abstract 

When two people engage in verbal interaction, they tend to 

accommodate on a variety of linguistic levels. Although recent 

attention has focused on to the acoustic characteristics of 

convergence in speech, the underlying articulatory 

mechanisms remain to be explored. Using 3D electromagnetic 

articulography (EMA), we simultaneously recorded 

articulatory movements in two speakers engaged in an 

interactive verbal game, the domino task. In this task, the two 

speakers take turn in chaining bi-syllabic words according to a 

rhyming rule. By using a robust speaker identification 

strategy, we identified for which specific words speakers 

converged or diverged. Then, we explored the different vocal 

tract features characterizing speech accommodation. Our 

results suggest that tongue movements tend to slow down 

during convergence whereas maximal jaw opening during 

convergence and divergence differs depending on syllable 

position. 

 

Index Terms: Speech Convergence, Dual EMA, human-

human interaction.  

1. Introduction 

During verbal interaction two individuals become part of a 

complex system whose information flow is mediated by 

visible behavior, prior knowledge, motivations, inferences 

from the partner’s mental states, and history of prior 

interactions [1]. While interacting, they adjust their speech to 

accommodate to each other [2]. Within accommodation, we 

can identify Convergence (when speakers’ speech 

characteristics become progressively more similar) and 

Divergence (when speakers move away from the speech 

characteristics of each other). 

Research in this area has dealt with the quantification of 

speech convergence via objective acoustic measures [3] or 

subjective evaluations [5] [6], showing a great deal of 

inconsistency [7]. Part of the complexity is probably due to its 

dependency on contextual, social and linguistic factors. 

Previously, our group devised a robust method to extract 

phonetic convergence in a game-like speech turn-taking task, 

by using a speaker verification technique [8] [9]. 

In parallel, the investigation of convergence at the 

articulatory level is still sparse. For this purpose, we evaluated 

articulatory dynamics underlying speech accommodation. We 

asked pairs of participants to engage in an interactive speech 

task [9] while dual-EMA was recorded. Our first aim was to 

apply the same technique used in [9] to verify its robustness 

on a different data-set. More importantly though, we intended 

to investigate what happens in the articulatory features space, 

during Convergence and Divergence. 

2. Materials and method 

2.1. Domino task 

We asked native French speakers to perform a Verbal 

Domino Task (VDT) [8][9] with French words (Fig. 1B). 

VDT consists in two speakers taking turn in chaining 

disyllabic words according to a rhyming rule. After listening a 

word pronounced by a participant, the other participant must 

choose between two alternative words, such that the first 

syllable matches the last syllable produced by his/her partner 

in the game. To build the word chain, we first selected 

disyllabic words from the Lexique-3 (http://www.lexique.org/) 

French lexical database. This database was manually checked 

to exclude crude or offensive words. The chain was built by 

using a custom made iterative algorithm, which started from 

the highest frequency word and then looked for the next 

highest frequency item, fulfilling the rhyming criteria and no 

repetitions. In this manner, we generated sequences of 300 

unique disyllabic words for the VDT. 

 

 

 

 

Figure 1. (A) Experimental timeline including the Solo_pre, 

Solo_post and duet sessions. (B) Sequence of events during the 

VDT. (C) EMA sensor positioning in one participant. 
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2.2. Participants 

Participants were ten healthy right handed native French 

subjects (6 males and 4 females, age range 21-26), who did 

not know each other, composing 5 same-gender dyads. 

Everyone had self-reported normal hearing. All participants 

gave informed consent to participate to the experiment. 

Procedures were approved by the Ethics Committee of the 

Ferrara University in accordance with the ethical guidelines of 

the Declaration of Helsinki. 

2.3. Procedure 

The experiment was divided into three main sections (Fig. 

1A). Solo recordings were performed before and after the 

Duet sessions (Solo_Pre, Solo_Post). The Solo required 

subjects to read 60 words to establish a subject-wise baseline. 

These words were phonetically balanced and selected from the 

300 words chosen for the VDT. During the Solo the other 

participant was listening to classical music through 

headphones. 

During the Solo, one word at time was presented on a black 

screen and after a variable delay of (1 - 1.5 s) a GO signal 

instructed the subject to read it aloud. This random delay was 

introduced to avoid anticipation and entrainment to the rhythm 

of presentation. For the same reason, trials presentation was 

intermingled with random delays (2-2.5 s). Since each subject 

completed 60 words in the Solo, we collected a dataset of 

1200 words. The Solo sessions lasted about 4 minutes.  

In Duet, the task started with one word presented on the 

screen of one subject (Subject A), while the other participant’s 

screen was blank (Subject B). Subject A waited for the GO 

signal (delay of 1-1.5 s) and had 2 seconds to respond. At the 

end of the trial, Subjects A’s screen went blank and two words 

appeared on Subject B’s screen. Now, Subject B had to choose 

which word to read aloud as only one was complying with the 

rhyming rule. This chain of events continued until the end of 

the list. 

The 300 words of VDT were divided into 3 lists of 100 

and repeated twice so that the Duet part was composed by six 

separate sessions. In each session, the two speakers read 50 

words each, summing up to 300 words per speaker and thus 

resulting in a total of 3000 words. The duet sessions lasted 

about 30 minutes. The VDT was implemented in a 

Psychotoolbox 3 script running in the Matlab environment. 

Speech was recorded by two high-quality microphones 

(AKG C1000S) and the speech data were digitized and 

acquired by an acquisition CPU (16 bit, stereo, 22050Hz 

sampling frequency). Both signal went through an external 

dedicated amplifier (MMX-11USB 2ch audio mixer) and 

acquired with a A/D acquisition board (MC measurement 

computing USB-1608GX-2AO). 

Articulatory data was recorded with two EMA systems. 

The first one was an NDI (Northen Digital Instruments, 

Canada; sampling frequency, 400 Hz) and the second one was 

an AG501 (Carstens Medizinelektronik GmbH; sampling 

frequency, 256 Hz). Seven 5-degrees-of-freedom (5-DOF, 

x,y,z, pitch and roll) sensor coils were glued on the Upper Lip 

(UL), Lower Lip (LL), Upper Incisor (UI), Lower Incisor (LI), 

tongue tip (TT), tongue middle (TD) and tongue back (TB). 

For head movement correction, a 6-DOF sensor coil was fixed 

on the bridge of a pair of glasses worn by the participants (Fig. 

1C). 

3. Pre-Processing 

3.1. Acoustic Pre-Processing 

Incorrect trials (e.g., wrong pronunciation, wrong choice 

of words, about 3.1%) were excluded from the analysis. 

Periods of silence were discarded using an energy-based 

Speech Activity Detector. We then computed MFCCs (Mel 

Frequency Cepstral Coefficients) by segmenting the data into 

25ms frames (10ms overlap) with a Hamming window. The 

short-time magnitude spectrum, obtained by applying FFT, 

was passed to a bank of 30 Mel-spaced triangular bandpass 

filters, spanning from 0 Hz to 3,800 Hz. The output of the 30 

filters were transformed into 12 static, 12 velocity and 12 

acceleration MFCCs with the 0'th coefficients resulting in 39 

MFCC dimensions in total. 

3.2. Articulatory Pre-Processing 

Articulatory data from both EMA systems, was down-

sampled at 100Hz. We removed from the dataset all words for 

which one or more sensors were detached (Convergence: 

36.14±23.36%; NoChange: 32.27±16.44%; Divergence: 

42±20.5%). Vocal articulator trajectories (x, y, z positons of 

the sensor coils) were filtered using an adaptive median filter 

(10-50ms window) and further smoothed using a 20Hz cutoff 

elliptic low-pass filter. Coils rotation was ignored. From the x-

y midsagittal coil positions we extracted six vocal tract 

features: lip aperture (LA) (equation 1), lip protrusion (PRO) 

(equation 2), jaw opening (JO) (equation 3), tongue tip 

constriction degree (TTCD), tongue blade constriction degree 

(TBCD) and tongue dorsum constriction degree (TDCD). 

𝐿𝐴 =  |𝑈𝐿𝑦 − 𝐿𝐿𝑦|                                                (1) 
𝑃𝑅𝑂 =  |𝑈𝐿𝑥 − 𝐿𝐿𝑥|                                             (2) 

  𝐽𝑂 =  |𝑈𝐼𝑦 − 𝐿𝐼𝑦|                                                  (3) 

 

TTCD, TBCD and TDCD are the Euclidean distance of TT, 

TB and TD to the curve of the palate on the midsagittal plane. 

To assess how fast these vocal tract features are changing, the 

velocity of these features was also computed. Since words in 

the VDT are disyllabic, we expected two local maxima for 

each word in the jaw opening trajectory, which roughly 

correspond to the open configuration of the vocal tract for the 

two vowels. For this reason, we computed the maximum jaw 

opening of the two syllables separately (JO_Syl_1; JO_Syl_2), 

and their average (JO_Syl_1&2). 

3.3. Convergence and Divergence calculation 

To extract an un-biased measure of Convergence and 

Divergence, we used a data driven, text independent, 

automatic speaker identification technique [9], based on 

Gaussian Markov Modelling (GMM) Universal Background 

Model (UBM). The Gaussian components model the 

underlying broad phonetic features (i.e. MFCCs) that 

characterize a speaker’s voice. We used the Sidekit-Python 

library for GMM-UBM modelling. UBM was trained with the 

pooled Solo_pre speech data of all the participants. Then, 

individual speaker-dependent models were obtained via 

maximum a posteriori (MAP) adaptation of the UBMs to the 

Solo_pre speech data of each speaker separately.  

A cross-validation technique was used to choose the 

optimum number of GMM components. Solo_post speech was 

used as a validation set, and each speaker-dependent model 

performance was verified against the UBM model. Finally, a 
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256-component GMM was chosen as it had the lowest Equal 

error rate (EER) and showed a good modelling performance of 

the confusion matrix for the cross validation set (EER=4%; 

Fig. 2). 

 

Figure 2. Speaker verification confusion matrix of all the 

speaker-dependent models against background UBM in 

the Solo_Post. Here the diagonal positive score line 

indicates a good MAP adaptation. The numbers are the 

subtraction between speaker-dependent model and UBM 

model and is represented by Log-Likelihood ratio (LLR)  

Convergence and Divergence was measured for each word 

level using the same procedure described in [9]. First, we 

tested each speaker-dependent model on the 60 Solo-pre 

words. Then we measured the posterior probability score for 

each word during interaction. We then set a threshold of 1.5 

standard deviations (STD) based on the distribution of the 

prediction scores at baseline [as in 9]. If the word was 

predicted (i.e. minimum posterior probability) by the speaker-

own model, we labeled that word as NoChange. If the word 

was predicted by its partner model we labeled that word as 

Convergent. Otherwise, when neither own or partner model 

predicted the word, we labeled that word as Divergent. 

4. Results 

4.1. Convergence and Divergence frequency 

The total number of Convergence, Divergence and 

NoChange during the whole interaction is shown in Figure 3. 

Convergence and Divergence are variable phenomena because 

some dyads show a large amount of convergence while others 

much less [9][10]. The Female dyads (FF) converged more 

than male dyads (MM) (FF 25% and MM 7%) which is 

consistent with previous results [8][9]. A one-way repeated-

measures ANOVA with the sessions (6 levels) as within-

subject factor did not reveal any significant effect of 

Convergence (F(5,45) = 0.78, p=0.56). The same analysis on 

Divergence showed no significant effects (F(5,45) = 0.69, 

p=0.63) indicating that the amount of Convergence and 

Divergence did not change significantly across the 

experimental blocks.  

4.2. Acoustic features 

Four speech acoustic features, F0, F1, F2 and Intensity 

were extracted from the audio recordings using Praat software 

[11].  First, we averaged within each word and then within 

subjects. A two-tailed t-test, on z-scored values, was used to 

explore differences between Convergence and NoChange or 

Divergence and NoChange. Results show (Table 1) that 

intensity was significantly different (t(9)= 4.93; p<0.0001) 

during Convergence compared to NoChange and during 

Divergence compared to NoChange (t(9)= -2.81; p=0.02). 

 

 

 

Figure 3. No. of times each participant converged or 

diverged during the experiment.  

Table1: Results of two-sided student t-test (Convergence Vs. 

NoChange and Divergence Vs. NoChange). 

 
Conv 

(±STD) 

NoCh 

(±STD) 

Div 

(±STD) 

t-test p-value 

Con-

NoCh 

Div-

NoCh- 

F0 (Hz) 135±38 134±40 136±36 0.37 0.3 

F1 (Hz) 83±22 69±28 80±24 0.56 0.09 

F2 (Hz) 272±69 244±84 281±75 0.28 0.11 

Intensity 

(dB) 58±10 58±10 57±10 0.0001 0.02 

 

4.3. Vocal Tract features characteristics during 

accommodation 

In the construction of our VDT list we included 11 

different vowels (lexical code: 𝑎, 𝑒, 𝑖, 𝑜, 𝑢, 𝑦, 𝑂, 𝐸, @, §, 2; for 

details, see http://www.lexique.org/). However, given that for 

some subjects we observed relatively few instances of 

Convergence or Divergence we ended up with a smaller set of 

vowels in these categories. Therefore, to avoid any biased 

comparison, when analyzing articulatory data, we excluded 

NoChange words containing very rare vowels in Convergence 

or Divergence. A NoChange word was included if all its 

vowels were present in at least 5% of the convergent or 

divergent words. This resulted in four vowels (/𝑎/,/𝑒/,/𝑖/,/
𝑜/) whose distribution in the three different conditions is 

shown in Figure 4. A two-tailed t-test on z-scored values was 

used to explore the differences between Convergence and 

NoChange or Divergence and NoChange for each vowel. 

Results show that only for /𝑒/, there was a significant 

difference between Convergence and NoChange (t(9)= 2.77; 

p=0.022). This means that the following analyses on 

articulatory data were run on all 4 vowels (/𝑎/,/𝑒/,/𝑖/,/𝑜/) 

as well on (/𝑎/,/𝑖/,/𝑜/). 
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Figure 4: Most frequent vowel distribution [%] in the three 

conditions for all subjects. 

 

 

Figure 5: (A) Whole-word articulatory data changes across 

conditions. The t-tests showed significant differences in the 

velocity of vocal tract tongue features (TTCD, TDCD, TBCD) 

between Convergence and NoChange (orizontal lines). (B) 

Syllable level differences in maximal jaw opening. 

JO_syll_1&2 and JO_syll_1 are significantly different in 

Convergence with respect to NoChange whereas JO_syll_2 is 

significantly different in Divergence with respect to 

NoChange. 

 

Vocal tract features were first averaged within each word 

then within each subject. A two-tailed t-test performed on z-

scored values, was used to explore differences between 

Convergence and NoChange and between Divergence and 

NoChange. Results showed that velocity of the three vocal 

tract tongue features were significantly different in 

Convergence and NoChange conditions (TTCD: t(9)= -2.55; 

p=0.031; TBCD: t(7)= -2.82; p=0.026; TDCD: t(8)= -2.63; 

p=0.03) (Figure 5A) demonstrating that  during Convergence 

speakers move their tongue more slowly than in NoChange. 

Moreover, maximal jaw opening was significantly modulated 

in Convergence Vs. NoChange (Figure 5B; JO_syll_1&2: t(9)= 

2.79; p=0.021; JO_syll_1: t(9)= 2.47; p=0.03) and maximal jaw 

opening of the 2nd syllable was significantly different in 

Divergence Vs. NoChange (JO_syll_2: t(9)= 2.75; p=0.022). 

Larger values in these features means that during Convergence 

speakers opened their jaw more than in NoChange, especially 

in the first syllable. Differently, in the second syllable the 

pattern of jaw opening was reversed and this was true for 

Divergence only. The same pattern is observed when 

removing the /𝑒/ vowel from the dataset. Maximal jaw 

opening was significantly modulated in Convergence Vs. 

NoChange conditions (JO_syll_1&2: t(9)= 3.13; p=0.012; 

JO_syll_1: t(9)= 2.98; p=0.015) and maximal jaw opening of 

the 2nd syllable was significantly different in Divergence Vs. 

NoChange (JO_syll_2: t(9)= 3.23; p=0.01). 

5. Conclusion  

Speech convergence is the phenomenon by which some 

participants in a dialogue tend to naturally align with each 

other in their phonetic characteristics. In this paper, we 

demonstrated the robustness of the automatic phonetic 

convergence detection method we already presented in [9]. In 

fact, as shown in Figures 2 and 3, our results were similar to 

those of our previous study. It is worth mentioning that the 

present dataset is characterized by relevant differences 

including participants’ native language, the language of the 

word list, the word chain length, the pacing of VDT (self-

paced as opposed to externally-paced) and the number of 

participants. 

Besides, we also show preliminary but compelling results 

indicating that accommodation phenomena occur at the level 

of articulatory features. When we analyzed average velocity 

profiles at the whole-word level, we found that speakers slow-

down their tongue movements during Convergence. Instead, 

when separating the two syllables of each word, we observed 

an interesting pattern of jaw maximal opening. In fact, the first 

syllable shows larger values during Convergence, whereas the 

second syllable smaller values for Divergence. Note that the 

first syllable is the one shared with the preceding word of the 

phonetic dyadic context (i.e. the word just uttered by the 

partner). Most importantly, the VDT rhyming rule forces 

subjects to focus their attention to the last syllable they heard 

to match it to the first they have to articulate. Interestingly, the 

opposite result we found for the second syllable could be 

explained by the fact that, for the speaker, this syllable does 

not have to comply with any specific rule. However, due to the 

variability of accommodation phenomena [10], results could 

in part be driven by dyads showing greater effects.  

The present work starts exploring the articulatory 

counterpart of phonetic convergence. Future experiments will 

need to acquire larger number of dyads and eventually explore 

if at the single syllable level there are critical articulatory 

features [12] which are more or less robust to accommodation 

phenomena occurring during speech interactions. 
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