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Abstract
Acoustic scene classification (ASC) is an audio signal process-
ing task where mel-scaled spectral features are widely used
by researchers. These features, considered de facto baseline
in speech processing, traditionally employ Fourier based trans-
forms. Unlike speech, environmental audio spans a larger range
of audible frequency and might contain short high-frequency
transients and continuous low-frequency background noise, si-
multaneously. Wavelets, with a better time-frequency local-
ization capacity, can be considered more suitable for dealing
with such signals. This paper attempts ASC by a novel use
of wavelet transform based mel-scaled features. The proposed
features are shown to possess better discriminative properties
than other spectral features while using a similar classification
framework. The experiments are performed on two datasets,
similar in scene classes but differing by dataset size and length
of the audio samples. When compared with two benchmark
systems, one based on mel-frequency cepstral coefficients and
Gaussian mixture models, and the other based on log mel-band
energies and multi-layer perceptron, the proposed system per-
formed considerably better on the test data.
Index Terms: environmental sounds, cepstral features, Haar
wavelet

1. Introduction
Assigning a textual label to an audio signal based on the general
acoustic characteristics of recording location or surroundings is
referred to as acoustic scene classification (ASC) [1]. This field
of audio signal processing has gained popularity because of the
importance of information obtained from environmental sounds
in applications like surveillance, smart devices, robotics, data
archiving, and hearing aids.

In the popular ‘bag-of-frames’ (BoF) approach for sound-
scape (audio equivalent of landscape) classification, an au-
dio stream is represented by a long-term statistical distribution
(e.g. Gaussian mixture models (GMMs)) of some set of short-
term spectral features (e.g. mel frequency cepstral coefficients
(MFCCs)) [2]. However, the much simpler one-point average
approach was shown to be better than the BoF paradigm when
evaluated on larger audio scene datasets with less within-class
variability [3]. Nevertheless, the baseline system for ASC pro-
vided with the first two challenges on detection and classifica-
tion of acoustic scenes and events (DCASE) was the BoF sys-
tem [4, 5]. Following the current trend of use of deep learn-
ing in all machine learning applications and by its success in
DCASE 2016 [6], the baseline system of DCASE 2017 was a
multi-layer perceptron (MLP) trained on log mel-filter bank en-
ergies (MBE) [7].

Audio signals captured from acoustically dynamic sur-
roundings cover almost the entire audio frequency range of
20Hz to 20 kHz. Moreover, unlike in the case of speech sig-

nals where one excitation source and one transformation sys-
tem are active at a time, sounds generated from multiple au-
dio sources overlap to form an acoustic scene. Features that
can capture local information in both time and frequency do-
mains would provide better representation of such multifaceted
signals. However, according to the Heisenberg-Gabor limit, a
simultaneous sharp localization in both the complementary do-
mains is not possible [8]. The wavelet-based transforms have
basis functions that are more concentrated in both the domains
than the Fourier based transformations [9]. Consequently, better
time-frequency localization ability can be expected from fea-
tures that use wavelet transform in their extraction process.

Although spectral features dominate the research in this
field, other possibilities like time-frequency features obtained
from matching pursuit algorithm [10] and time-frequency fea-
tures based on the histogram of gradients [11] have also shown
considerable potential in environmental audio classification.
In this paper, we propose the use of a variant of MFCC for
ASC. The feature, mel-frequency discrete wavelet coefficients
(MFDWC) makes use of wavelet transform in place of the con-
ventional cosine transform in MFCC extraction [12]. The clas-
sifier employed is support vector machine (SVM) with radial
basis function (RBF) kernel. The rest of the paper is organized
in the following way. The evolution of the wavelet-based fea-
tures from the conventional MFCC is discussed in Section 2.
The proposed system architecture and the evaluation setup used
in this work are described in Section 3. In Section 4, we present
the results obtained on multiple datasets and discussions on the
same. It is followed by the conclusions drawn from this work
in Section 5.

2. Evolution of MFDWC
In all fields of audio signal processing, the most exploited fea-
tures are mel-scale based. The inspiration behind using mel-
scaled filterbank is the logarithmic sensitivity of the human
hearing system to the frequency of audio signals. Two such
features, namely MFCC and log MBE, were also used in the
systems considered as the baseline in this work [5, 7]. Con-
ventionally, MFCC are obtained when discrete cosine transform
(DCT) is applied to log MBE. If xn represents the log-energy
of the nth filter of N filters, then MFCCk, the kth MFCC co-
efficient (k = 1, · · · ,M , M < N ), is given by

MFCCk =

N−1∑

n=0

xn cos
(πk
N

(n+
1

2
)
)

(1)

The purpose of DCT is three-fold. First, it replaces the
inverse Fourier transform needed to get the cepstrum, second,
it performs decorrelation since the filters of the mel-scaled fil-
terbank are overlapping, and third, it brings more information
to the lower frequencies which in turn allows the use of fewer
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Figure 1: Comparison of mel-scale based features. (a) samples from two different classes; (b) spectrograms of the samples; pictorial
representation of features (c) log-MBE; (d) MFCC; (e) NOBTC; (f) and (g) approximation and detail coefficients, respectively, of
MFDWC

coefficients than the filters. The feature extraction scheme in
[13] captures speech information in a more efficient manner
than the standard MFCC because it applies DCT in blocks
based on dominant formant frequency zones. These block-
based MFCC were shown to be better for speaker recogni-
tion. Non-overlapped block transform coefficients (NOBTC),
obtained when the DCT blocks do not overlap, have reportedly
outperformed MFCC in speech/music discrimination [14] and
acoustic scene classification [15, 16].

The basis vectors of DCT span the whole frequency range
of the signal. As a result, corruption of a band due to noise af-
fects all the coefficients. With the block-DCT approach, many,
if not all, coefficients might get corrupted in the presence of
a band-limited noise because the number of blocks is two or
three. Also, the DCT basis vectors have fixed time-resolution
for all frequencies. Use of discrete wavelet transform (DWT)
instead can overcome these shortcomings because it has bet-
ter time and frequency localization capacity, while simultane-
ously filling the need of DCT [12]. Unlike Fourier based trans-
forms, wavelet transform uses short basis functions for high-
frequency content and long basis functions for low-frequency
content of a signal. This property makes wavelets more suitable
for working with environmental audio data which might carry
brief high-frequency transients and long-lasting low-frequency
background noise at the same time [17].

DWT of a signal x[n] is defined by the equation

W (j, k) =
∑

j

∑

k

x[k]2−j/2ψ(2−jn− k) (2)

where ψ(t) is called the mother wavelet and is a fast decay-
ing time function with finite energy. All our experimental re-
sults shown in this work are by using the Haar function as the
mother wavelet, which is the oldest, simplest and a compactly

supported wavelet. It is given by

ψ(t) =





1, 0 ≤ t < 1/2

−1, 1/2 ≤ t < 1

0, otherwise

(3)

One level of wavelet decomposition of a time-domain signal
is equivalent to passing it through a low-pass filter g[n] and a
high-pass filter h[n] simultaneously. The output of the filters is
downsampled by a factor of two because their frequency con-
tent is half of that of the original signal. These two filtered
signals represent the approximate and the detail information of
the signal and can be expressed as

ya[k] =
∑

n x[n]g[2k − n] (4a)
yd[k] =

∑
n x[n]h[2k − n] (4b)

For more details on wavelets, the interested reader may refer to
[9] and for multiresolution signal analysis to [18].

When DWT replaces DCT in the MFCC extraction scheme,
the new set of features is called mel-frequency discrete wavelet
coefficients (MFDWC) which has proven its mettle in speech
recognition [12] and audio event detection [17]. In order to ex-
hibit the superior discriminative capacity of the wavelet-based
features, we present a portrayal of different mel-scaled features
in Fig 1. Two randomly picked samples from the DCASE 2017
ASC dataset, which turned out to be from ‘bus’ and ‘city center’
classes, their spectrograms, corresponding log MBE, MFCC,
NOBTC, and approximation and detail parts of MFDWC are
shown in Fig 1(a), (b), (c), (d), (e), (f) and (g) respectively.
To enable proper visual comparison, all the matrices were put
through min-max normalization so that the values are in the
range [0, 1]. It should be noted here that the approximation
and detail coefficients’ dimensions are half of that of the other
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three features. The figure shows that the change in the signal
pattern in time (after 7 sec for ‘bus’ sample and between 4-6
sec for ‘city center’ sample) is captured by all the features, but
it is done vividly and with fewer components by MFDWC. In
case of ‘bus’, it was a high-frequency (13-15 kHz) sound of a
sudden gush of wind (probably due to door opening or another
vehicle passing by). The class ‘city center’ represents a busy
road with multiple vehicles moving simultaneously, which is
clearly seen by the high energy in 5-15 kHz band in the logMBE
and MFDWC approximation component.

3. Proposed system
The proposed ASC system incorporates the general pattern clas-
sification framework. All the incoming audio signals go through
pre-processing and feature extraction processes. Since the
DCASE data is in binaural stereo format (i.e. the two channels
carry different values), in our system, the first pre-processing
step is to convert the data samples to monophonic audio by av-
eraging the two channels. Monophonic audio frames of 20 ms
having 50% overlap were chunked by applying Hamming win-
dow. Pre-emphasis factor of 0.97 was used to emphasize the
high-frequency content. The feature extraction block diagram
is elaborated in Fig. 2. For MFDWC extraction, a filterbank of
60 mel-scaled triangular filters was employed. The choice of
the number of filters is motivated by the fact that we are dealing
with audio signals that can go up to a frequency of 20 kHz. Only
one level of decomposition was performed with Haar wavelet
and both the approximation and detail coefficients of the DWT
were retained. Discrete-time derivatives or delta (∆) features,
evaluated with a 3-frame window, were appended only for ap-
proximation coefficients of MFDWC.

Models were built from features of training data and then
employed for classification of the test samples. In our system,
frame-wise mean and standard deviation of the features were
given as input to an SVM classifier with RBF kernel. Most
of the submissions of DCASE 2016 employed fusion based
or deep-learning based classification [6]. Nonetheless, SVM’s
presence in the top ten indicated it as a viable choice over base-
line systems’ classifiers, given that discriminative classifiers are
more suited for ASC task than the generative ones [1, 19] and
deep-learning based ones need more resources. Since SVM
is a binary classifier, for our multi-class classification problem
we have used the one-vs-one approach, consequently training
N(N − 1)/2 classifiers for N classes. The cost parameter (C)
of the SVM and the γ parameter of the Gaussian RBF were em-
pirically determined by applying grid-search on DCASE 2013
ASC dataset [4].

3.1. Evaluation Setup

We have used the development dataset of TUT Acoustic Scenes
2016 [5] and TUT Acoustic Scenes 2017 [7] in our experiments,
henceforth referred to as TUTAS16D and TUTAS17D respec-
tively. The two datasets differ from each other in the length
of the audio streams and amount of data as given in Table 1.
According to the DCASE challenges’ ASC task setup, devel-
opment data is partitioned into k folds, where k=4 for both the
datasets. Fold-wise mean classification accuracy is used as the
performance metric during development. For testing the pro-
posed system, the evaluation datasets of DCASE 2016 (TU-
TAS16E) (390 samples of 30sec each) and DCASE 2017 (TU-
TAS17E), (1620 samples of 10sec each) are used. The corre-
sponding development datasets are used as training data during

testing. For performance comparison, we used the baseline sys-
tems of the DCASE challenges of 2016 (Baseline 1) and 2017
(Baseline 2), which are MFCC-GMM based and log MBE-MLP
based respectively.

Table 1: Development data description

Name TUTAS16 TUTAS17
Duration per audio 30 sec 10 sec
Number of files 1170 4680
Number of classes 15

Classes

lakeside beach, bus, cafe/restaurant,
car, city center, forest path, grocery
store, home, library, metro station,
office, urban park, residential area,

train, and tram
Data format 44.1 kHz, 16 bit, binaural stereo wav files
Location Finland

4. Results and Discussion
Wavelet (W) decomposition of a signal gives approximation
(WA) and detail (WD) coefficients. For an efficient informa-
tion representation, we first evaluated different configurations
of MFDWC. These configurations are listed in Table 2 along
with their corresponding results. We observed that the WD
coefficients are better than the WA coefficients when they are
considered individually. However, when appended with their
respective velocity or delta (∆) coefficients, the performance
of the latter surpasses that of the former. This shows that ∆D
coefficients do not contribute any useful information. Besides
appending the WA and WD coefficients and their respective ∆s
that form different feature-fusion configurations, we also used
score-fusion of the features to find an optimum feature config-
uration. In the table, feature-level and score-level fusion are in-
dicated by “ ” and “+” respectively. We used FoCal Multiclass
toolkit [20] to find weights for the score fusion. From the mean
accuracy obtained on the two datasets, the best configuration for
TUTAS16D is the score-level fusion of WA and WD appended
with their respective ∆s, while for TUTAS17D it is feature-
level fusion of WA, ∆A and WD coefficients. Finally, we de-

Table 2: Fold-wise mean accuracy and standard deviation (%)
for different combinations of MFDWC. W: Full decomposition;
WA: Approximate coefficients; WD: Detail coefficients; ∆: Ve-
locity coefficients; ∆A: Approximation coefficients’ velocity;
∆D: Detail coefficients’ velocity; : Feature-level fusion; +:
Score-level fusion. Bold-face: Maximum mean accuracy in the
column.

Feature Dim. TUTAS16D TUTAS17D
WA 30 62.62±4.31 69.66±2.23
WA A∆ 60 76.74±2.91 78.23±2.70
WD 30 68.71±2.50 74.24±1.25
WD D∆ 60 68.45±1.05 73.22±1.12
W 60 76.74±3.02 79.56±2.54
W ∆ 120 78.53±3.96 80.63±3.44
WA A∆ WD 90 78.62±2.43 80.84±3.31
WA+WD 30,30 76.67±3.77 79.43±1.89
WA+WD D∆ 30,60 77.44±2.97 79.49±1.86
WA A∆+WD 60,30 78.47±3.53 80.45±2.01
WA A∆+WD D∆ 60,60 78.90±3.74 80.50±2.24
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Figure 2: Block diagram of MFDWC extraction

Table 3: Fold-wise mean accuracy and standard deviation (%) for different mel-scale based features. NA: Not applicable. Bold-face:
Maximum mean accuracy in the column.

Feature TUTAS16D TUTAS17D TUTAS16E TUTAS17E
LogMBE-SVM 65.37±3.87 70.98±2.08 67.18 59.88
MFCC ∆ ∆∆-SVM 71.93±5.72 74.46±2.17 73.85 60.99
NOBTC ∆-SVM 75.13±2.24 78.58±3.67 78.97 62.59
MFDWC O-SVM 78.62±2.43 80.84±3.31 81.79 69.88
MFCC ∆ ∆∆-GMM (Baseline 1) 71.29±3.81 NA 77.20 NA
LogMBE-MLP (Baseline 2) NA 75.12±1.62 NA 61.00

cided upon WA ∆A WD as the optimum feature configuration
because the second dataset is bigger and more complex and its
result on the first dataset is very close to the maximum value.
Henceforth, this configuration is referred to as MFDWC O in
this paper.

Figure 3 shows a pictorial representation of confusion ma-
trices obtained by Baseline 2 and proposed framework when
evaluated on the TUTAS17D dataset. From the pictures, one
can observe that more than any other class, the proposed sys-
tem has the upper hand on ‘library’ and ‘train’ classes. It is
noteworthy that ‘office’ class is better classified by Baseline 2.
Overall, the misclassification pattern is more or less similar in
both cases owing to the use of the same type of features (i.e.
mel-scaled) by both the systems.

The superiority of MFDWC over other mel-scale based fea-
tures was demonstrated in Fig 1. We further reinforce the fact
in Table 3 with the help of the classification accuracy obtained
on the development and evaluation datasets by the application
of these features to SVM classifier. We also show in the table
the performance of the two baseline systems on their respec-
tive datasets. The proposed feature performed above 10% better
than Baseline 1 on TUTAS16D, while the relative improvement
was close to 8% compared to Baseline 2 on TUTAS17D. On
the respective test data, however, the proposed system showed
around 6% and above 14% better results. Note that the per-
formance of all features during development is better for 2017
than for 2016. But the former’s evaluation dataset was seen to
be a tougher nut to crack for all. Although the proposed system
managed to stay ahead in all conditions shown here, the results
could be improved with advanced techniques and fusion based
approaches to come in the range of the best performing systems
of the two challenges.

5. Conclusions
In this paper, we discussed the usefulness of the time-frequency
localization property of wavelets while working with environ-
mental audio. We presented a novel use of wavelet-based mel-
scaled features for acoustic scene classification. The feature
MFDWC, where DCT from the conventional MFCC extraction
was replaced by DWT, displayed more discriminative power
than other mel-scale based features. Accompanied by SVM as
the classifier, the feature outperformed the MFCC-GMM based
and log MBE-MLP based baseline systems.

Figure 3: Pictorially depicted confusion matrices of (a) log
MBE-MLP based Baseline 2, and (b) MFDWC O-SVM based
proposed system, both evaluated on TUTAS17D dataset. Ex-
amples of better performance of (b) are marked in thin-edged
boxes, while for (a) it is in thick-edged box.

Researchers in machine learning are now exploring possi-
bilities with deep-learning architectures. The ASC system pre-
sented here is comparatively less resource hungry. This work
shows that wavelet-based features in ASC task hold promise.

3326



6. References
[1] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D. Plumbley,

“Acoustic scene classification: Classifying environments from the
sounds they produce,” IEEE Signal Processing Magazine, vol. 32,
no. 3, pp. 16–34, 2015.

[2] J.-J. Aucouturier, B. Défréville, and F. Pachet, “The bag-of-
frames approach to audio pattern recognition: A sufficient model
for urban soundscapes but not for polyphonic music,” The Journal
of the Acoustical Society of America, vol. 122, no. 2, pp. 881–891,
2007.
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