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Abstract
With deep learning approaches becoming state-of-the-art in
many speech (as well as non-speech) related machine learning
tasks, efforts are being taken to delve into the neural networks
which are often considered as a black box. In this paper it is ana-
lyzed how recurrent neural network (RNNs) cope with temporal
dependencies by determining the relevant memory time span in
a long short-term memory (LSTM) cell. This is done by leaking
the state variable with a controlled lifetime and evaluating the
task performance. This technique can be used for any task to es-
timate the time span the LSTM exploits in that specific scenario.
The focus in this paper is on the task of separating speakers from
overlapping speech. We discern two effects: A long term effect,
probably due to speaker characterization and a short term effect,
probably exploiting phone-size formant tracks.
Index Terms: deep learning, long short-term memory, memory
leakage, memory span, multi speaker source separation

1. Introduction
Deep learning based methods are being used in many fields of
speech processing. Standard feed forward neural networks can-
not take into account temporal information (unless a context
window is used), which seems undesirable for a speech sig-
nal. Therefor RNNs are often used which are theoretically able
to memorize any input from the past. However, in practice it
is found that it is difficult for the standard RNN to be trained
such that it can use information from many time steps back be-
cause of phenomena known as vanishing and exploding gradi-
ents. The LSTM cell was introduced to counter these problems
by using a fixed error flow with gates that control the input and
output behavior of this flow [1]. LSTMs have been found to
have good memory capabilities for longer time spans [2] and
are currently being considered state of the art for many speech
related tasks [3, 4, 5, 6, 7].

Even though it is known that LSTMs cope better with long
term dependencies than standard RNNs, little research has been
done to determine the memory time span for a particular task.
In this paper part of the cell’s memory will be leaked away on
purpose to see how performance depends on lost information
from the past. A related approach has been taken for the task of
action detection in video [8]. A network with an LSTM com-
ponent was trained and at test time the memory was cleared
k time steps prior to the current time step. By evaluating the
performance of the network for different k the authors roughly
found the relevant time span before performance started degrad-
ing. The approach proposed in this paper differs in two ways
from there approach. Firstly, the memory forgetting technique
is applied during both training and testing. This prevents unex-
pected behavior due to mismatch (e.g. the network could be-
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have strangely if values are changed at test time while it never
happened at training time). It was indeed found that leaking
all the memory only at test time gave much worse results than
applying full leakage both during training and testing. Further-
more, the network might rely on information in the long term
memory that it could also extract from a shorter time span. By
applying the memory leakage during training as well, the net-
work could learn to extract this information in the shorter time
span. Secondly, in this paper, memory leakage is applied by
limiting the output of the forget gate to a number smaller than
1 such that each time step, part of the information in the mem-
ory is lost and over time the past is forgotten. In [8] at time t
the network uses a memory cell state c that was set to 0 at time
t − k. Therefore k different cell states have to be stored that
are each reset at a different time. In experiments for this paper,
k could exceed a hundred, which would lead to computational
problems, specifically during the back-propagation step in train-
ing. The leaking approach used in this paper preserves only a
single cell state and is thus computationally more elegant, but
time spans in this exponential decay approach are less precise.

The memory time span of the LSTM will be evaluated
on the task of single channel multi-speaker source separation
(MSSS). The original sound signals of multiple speakers have
to be retrieved from a mixture with overlapping speech, without
any prior knowledge of the speakers. This is thus an intraclass
separation problem which forces the network to memorize some
sort of speaker representation in order to consistently assign part
of the mixture to the same speaker. It was even shown that ex-
plicitly presenting speaker representations at the network inputs
could slightly improve MSSS accuracy [9]. It is expected that
heavy memory leakage will hinder the network to retain this
representation, making this tasks well suited to study long term
dependencies. Common deep learning approaches for MSSS
are Deep Clustering (DC) [10, 11], utterance-level Permutation
Invariant Training (uPIT) [12] and Deep Attractor Networks
(DANet) [13]. Experiments in this paper will be done using
DC but results for other approaches are expected to be similar.

The remainder of this paper is organized as follows. In sec-
tion 2 the DC approach to the MSSS task is explained, as well
as the importance of speaker representations for the task. The
method to leak memory will be described in section 3. Experi-
ments will be discussed in section 4 and finally a conclusion is
given in section 5.

2. Multi Speaker Source Separation
2.1. Deep Clustering

A mixture of S speakers is generally given by y[n] =∑S
s=1 xs[n] where xs[n] is the source signal for the sth speaker

as recorded by the microphone. For the task of MSSS, sig-
nals x̂s[n] have to be estimated to be as close as possible to
the original xs[n]. In the time-frequency domain, the same
task can be expressed using the Short Time Fourier Transform
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(STFT) of the signals. The task is then to estimate X̂s(t, f)

from Y(t, f) =
∑S
s=1 Xs(t, f). Usually, a mask M̂s(t, f) is

estimated for the sth speaker such that

X̂s(t, f) = M̂s(t, f) ◦Y(t, f) (1)

for every time frame t = 0, . . . , T and every frequency f =
0, . . . , F and with ◦ the Hadamard product [12]. The masks
are constrained by M̂s(t, f) ≥ 0 and

∑S
s=1 M̂s(t, f) = 1 for

every time-frequency bin (t, f).
In DC a D-dimensional embedding vector vtf is found for

every (t, f) via a mapping vtf = fθ(Y). fθ is based on a
deep neural network and is chosen such that vtf is normalized
to unit length. The embedding vectors for every bin are stored
as rows in a (TF × D)-dimensional matrix V. A (TF × S)-
dimensional target matrix U is defined such that utf,s = 1 if
target speaker s has the most energy in the mixture for (t, f) and
utf,s = 0 otherwise. A permutation independent loss function
(the columns in U can be interchanged without changing the
loss function) is then stated as

Lθ = ‖VVT −UUT ‖2F
=

∑

t1,f1,t2,f2

(〈vt1f1 ,vt2f2〉 − 〈ut1f1 ,ut2f2〉)2 (2)

where ‖.‖2F is the squared Frobenius norm. Afterwards, all em-
bedding vectors are clustered into S clusters c using K-means.
The masks are then constructed as follows

M̂s,tf =

{
1, if vtf ∈ cs
0, otherwise

. (3)

Equation 1 can then be used to estimate the original source sig-
nals via the inverse STFT and overlap-add [14].

2.2. Speaker representation

A speaker representation that is often used for speaker identi-
fication tasks is the i-vector [15, 16]. If such i-vectors are ex-
plicitly presented to the input of the DC network, as was done
in [9], possibly less information would have to be retained in
the LSTM memory. To obtain such an i-vector, first a Universal
Background Model - Gaussian Mixture Model (UBM-GMM)
is trained on development data. A supervector M is derived
for the utterance, using the UBM. M is then represented by an
i-vectorw and its projection based on the total variability space,

M = m+ Tw, (4)

where m is the UBM mean supervector, w is the total variabil-
ity factor or i-vector and T is a low-rank matrix spanning a sub-
space with important variability in the mean supervector space
and is trained on development data [15, 16].

3. Deep Leaky LSTM
A leaky LSTM is an LSTM that is designed to leak cell state
memory. First, the architecture of the regular LSTM is ex-
plained. Secondly, the adaptation to make it a leaky LSTM is
described and how the amount of leakage can be interpreted in
memory time span. Finally, the memory flow in a deep network
with LSTMs and how this flow can be controlled are described.

Figure 1: Schematic of a leaky LSTM. Based on [17].

3.1. The regular LSTM

A typical LSTM cell in a layer l of the network is defined as

f lt = σ(Wl
fh

l−1
t + Rl

fh
l
t−1 + bf ) (5)

ilt = σ(Wl
ih
l−1
t + Rl

ih
l
t−1 + bi) (6)

olt = σ(Wl
oh

l−1
t + Rl

oh
l
t−1 + bo) (7)

jlt = tanh(Wl
jh

l−1
t + Rl

jh
l
t−1 + bj) (8)

clt = clt−1 � f lt + jlt � ilt (9)

hlt = tanh(clt)� olt (10)

with h0
t = yt, where yt is the network’s input at time t and

f lt , ilt and olt are called the forget gate, the input gate and the
output gate, respectively. clt is called the cell state, hl−1

t is the
cells input and hlt is the cell’s output. Wl

∗ and Rl
∗ represent

trainable weights and b∗ trainable biases. These equations are
visualized in figure 1 when the green part is ignored.

3.2. The leaky LSTM

A leaky LSTM is a regular LSTM where the forget gate is mul-
tiplied by a positive constant a smaller than 1 such that not all
cell state information from the previous time steps can be re-
tained and thus part of the memory is leaked. (9) changes to

clt = clt−1 � f lt ∗ a+ jlt � ilt (11)

as is indicated in figure 1.
In (11) only the first term seems to contain temporal infor-

mation since only clt−1 has the t− 1 subscript. The component
of the cell state containing temporal information from time t−1
can thus be described as

c̄lt,t−1 = clt−1 � f lt ∗ a (12)

The maximal information transfer will be achieved when f lt =
1. In this case the contribution from time t − T in the current
cell state is given by

c̄lt,t−T = clt−T ∗ aT

= clt−T ∗ eT/τ
(13)

where the last equality is written in exponential decay form with
τ = −1/ log(a). τ is called the lifetime and when T = τ , 69%
of the initial value has been lost, which can be considered as the
time span for the memory.
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Figure 2: Schematic of flow of temporal information in a deep leaky LSTM and how it can be interrupted by cutting connections. The
red line show how recurrent information can bypass the leakage and how this can be countered by removing the red dashed connections.
Similar for blue.

3.3. Temporal information flow

It was claimed that temporal information in (11) was only
present in the c̄lt,t−1 term. However, the second term in this
equation has two factors that indirectly depend on previous time
steps via (6) and (8). For instance, if clt−1 = 1, f lt = 1 and the
network would like clt = clt−1 + ∆clt, it could obtains this via
(11) by making jlt � ilt = (1 − a) + ∆clt (with the restriction
that −1 6 jlt � ilt 6 1). This information flow is indicated
with the red arrow in figure 2. This is an unwanted flow since it
bypasses the memory leakage. This flow can be stopped by cut-
ting the red dotted connections and thus removing the temporal
information in jlt and ilt. Equations 6 and 8 then become

ilt = σ(Wl
ih
l−1
t + bi) (14)

jlt = tanh(Wl
jh

l−1
t + bj) (15)

respectively.
However, in these equations hl−1

t can also contain tempo-
ral information for l > 2 via (10) and (6,8,7,9) as is indicated
by the blue arrow on figure 2. This second order flow can be
stopped by also cutting the blue dotted connections. Equations
14 and 15 are retained and equations 5 and 7 become

f lt = σ(Wl
fh

l−1
t + bf ) (16)

olt = σ(Wl
oh

l−1
t + bo) (17)

respectively.
Memory leakage has only been considered on clt while a

standard RNN has no cell state and is also able to memorize
(even though less effective) via its cell’s output hlt. Cutting
the blue and red connection also removes this temporal flow as
hlt−1 is never used.

Note that the cutting of recurrent connections is only done
to gain more control over the memory leaking process to better
define the memory time span. It is not intended to gain perfor-
mance for the presented task. The research question could be
generalized to exploring temporal information used in RNNs
with LSTM-like cells.

4. Experiments
4.1. Experimental setup

All experiments were done on two speaker mixtures using the
corpus introduced in [10], which contains artificial mixtures
created by mixing together single speaker utterances from the
Wall Street Journal 0 (WSJ0) corpus. For every utterance a gain
factor was randomly chosen between 0 and 5 dB and utterances
were sampled at 8kHz. The length of the mixture was chosen
equal to the shortest utterance in the mixture as to maximize the
overlap. The training and validation sets contained 20,000 and
5,000 mixtures, respectively and were taken from the si tr s
set of WSJ0. The test set contained 3,000 mixtures using 16
held-out speakers of the si dt 05 and si et 05 set. The
decimal log-magnitude (floored at -300) of the STFT with a 32
ms window length and a hop size (whop) of 8 ms were used as
features and were normalized with mean and variance, calcu-
lated over the whole training set.

The used network has two fully connected leaky bidirec-
tional LSTM (leaky BLSTM) layers with 600 hidden units each
and was trained with the Adam learning algorithm [18]. Cur-
riculum learning was used [19], i.e. the network was presented
an easier task before tackling the main task. Here, the network
was first trained on 100-frame non-overlapping segments of the
mixtures. This network was then used as initialization when
training over the full mixture. Zero mean Gaussian noise with
standard deviation 0.2 was applied to the training features to
avoid local optima. Dropout was not used since it did not im-
prove the results in the experiments. The validation loss was
calculated 3 times per epoch and early stopping was applied
when the validation loss increased for 9 consecutive times. For
DC the embedding dimension was chosen at D = 20 and since
the frequency dimension was F = 129, the total number of
output nodes was DF = 20 ∗ 129 = 2580. Performance for
MSSS was measured on the average signal-to-distortion ratio
(SDR) improvements on the test set, using the bss eval tool-
box [20]. All networks were trained using TensorFlow [21] and
the code for all the experiments can be found here:
https://github.com/JeroenZegers/Nabu-MSSS.

To obtain the i-vectors, the UBM and T were trained on
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Figure 3: MSSS results with LSTM leakage. The lifetime is given by τ = −1/log(a) ∗ whop. Experiments for τ = 8.0 s and τ = 1.6 s
are not plotted but are used to fit the curves.

development data from the si tr s set of Wall Street Jour-
nal 1 (WSJ1). 13-dimensional Mel-Frequency Cepstral Coef-
ficients (MFCCs) are used as features and a voice activity de-
tector was used to leave out the silence frames. The UBM has
256 Gaussian mixtures andw is 10-dimensional, as was done in
[9]. The i-vectors used in the experiments were obtained from
the original single speaker utterances of WSJ0 but could also be
obtained from speech signal reconstructions after source sep-
aration, as was done in [9]. The former was chosen since it
provides a cleaner speaker representation. The MATLAB MSR
Identity Toolbox v1.0 [22] was used to determine the UBM and
T and to obtain the i-vectors.

4.2. Memory leakage

Networks were trained and tested for different values of a and
for the different architectures as depicted by the dotted cuts in
figure 2. Some networks were given the oracle i-vectors of both
single speech signals used in the mixture. Results are shown in
figure 3.

For all curves a rapid decrease in performance is found for
τ < 100 ms. Here the leaky LSTMs might have difficulty
with tracking the formants of the 2 speakers which span roughly
100 ms [23, 24]. For τ > 100 ms the networks without i-vectors
steadily keep increasing in performance, while the networks
with i-vectors have a higher performance which is roughly con-
stant. This seems to indicate that with a bigger time span,
the networks without i-vectors manage better to find their own
internal speaker representations. The networks with i-vectors
don’t need to find this speaker representation and therefor there
performance stays constant for bigger time span. For no leak-
age (τ = ∞) an i-vector is still a better speaker representation
than the internal representation in the LSTM. When leakage is
absolute (τ = 0), performance is better when i-vectors are used,
indicating that speaker information aids separation if no context

Table 1: The number of trainable parameters in the network in
millions.

Basic Red cut Blue cut
a > 0 18.12 15.24 12.36
a = 0 15.08 12.21 10.77

is given and assignment is more consistent over frames.
Since the curves for the LSTMs with i-vectors are flat be-

tween τ = 100 ms and τ = 300 ms the network seems to give
little importance to phonotactic and lexical information for the
task of MSSS.

The shapes of the curves for all three types of LSTMs are
quite similar, indicating that the bypass mechanisms of tempo-
ral information flow as described in section 3.3 are limited. The
performance drop when cutting connections is expected as the
model capacity is reduced by removing parameters (see table 1)
and LSTM gates are more difficult to control.

Experiments were also done where no leakage was applied
during training but only during testing. Results differed from
those shown in figure 3. For example, no temporal information
can be used if the LSTM with blue cuts and full leakage (τ =
0) is used at test time. However, if the network was trained
without leakage the SDR was 4.6 dB which is 2.0 dB below the
performance obtained when it is also trained with full leakage,
although both networks have no memory. This indicates it is
indeed necessary to apply leakage also at training time to avoid
mismatch.

5. Conclusions
Leakage was applied to the LSTM memory cell to determine
the relevant memory time span for MSSS. A short time effect
for formant tracking and a long time effect for speaker charac-
terization were found. The same technique could be used to find
the relevant time span for other tasks that use LSTMs.
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