
Implementing DIANA to model isolated auditory word recognition in English
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Abstract
DIANA, an end-to-end computational model of spoken word re-
cognition, was previously used to simulate auditory lexical de-
cision experiments in Dutch. A single test conducted for North
American English showed promising results as well. However,
this simulation used a relatively small amount of data collected
in the pilot phase of the Massive Auditory Lexical Decision
(MALD) project. Additionally, already existing acoustic mo-
dels were implemented. In this paper, we expand the analysis
of MALD data by including a larger sample of both stimuli and
participants. Acknowledging that most speech humans hear is
conversational speech, we also test new acoustic models cre-
ated using spontaneous speech corpora. Simulations success-
fully replicate expected trends in word competition and show
plausible competitors as the signal unfolds, but acoustic model
accuracy should be improved. Despite the number of responses
per word being relatively small (never more than five), correla-
tions between model estimates and participants’ responses are
moderate. Future directions in acoustic model training and si-
mulating MALD data are discussed.
Index Terms: spoken word recognition, computational model-
ling, DIANA, auditory lexical decision, reaction times

1. Introduction
The last three decades of research on speech perception have
been marked by the development of various models of spoken
word recognition. Some good overviews of these models and
the ways in which they can be compared or tested are given in
[1, 2, 3, 4, 5]. In this paper we use DIANA [6], a recently deve-
loped computational model of spoken word recognition, to mo-
del responses collected as part of The Massive Auditory Lexical
Decision (MALD) project [7]. DIANA resembles its predeces-
sors in many regards: it is an activation and competition model,
based mostly on bottom-up (phonetic) information as input (but
potentially utilizing top-down information as well) for choosing
the best candidate from a set of options stored in the lexicon.
However, unlike most previous models such as TRACE [8, 9]
or Shortlist [10, 11], DIANA does not require manually crea-
ted lower-level abstract units (e.g., phonemes), instead using the
acoustic signal itself as input. Additionally, even in comparison
to models that use acoustic signal as input, such as Fine-Tracker
[12, 13], DIANA also offers word/pseudoword decisions and
estimates response latencies, comparable to those obtained in
behavioral experiments.

DIANA has three components: the activation, the decision,
and the execution components, as shown in Fig 1. The acti-
vation and decision components operate in parallel. The activa-
tion component analyzes the acoustic input by converting it into
vectors of Mel-Frequency Cepstral Coefficients (MFCC). The
acoustic characteristics of every phone (sub-lexical units used
in our current setup) in the lexicon are represented by Gaussian

Figure 1: The process of spoken word recognition as assumed
by DIANA.

mixture models specifying the distribution of MFCC vectors for
three states in a hidden Markov model that each phone has. The
matching is performed using a Bayesian framework, and cal-
culated for every ten milliseconds of input. A controllable pa-
rameter determines the impact of bottom-up (acoustic) versus
the top-down (prior probability i.e., frequency) information in
selection of the winning candidate. The decision component
selects the winner based on another controllable parameter de-
termining the desired difference between the activation of the
top candidate and the best runner-up. In the case that this diffe-
rence is not attained at stimulus offset, yet another controllable
parameter estimates the added time for the final winner deci-
sion, also potentially taking into account the number of remai-
ning candidates. Finally, the execution component represents
the time taken to actually perform the task of responding to a
stimulus (i.e., pressing a button), and it is ordinarily fixed to
e.g., 200 milliseconds.

Although it was used for modelling participant behavior in
other tasks as well [14, 6], DIANA has predominantly been
used to simulate auditory lexical decision responses in several
studies, almost exclusively in Dutch. For example, DIANA
was used to model responses to 613 disyllabic monomorphe-
mic Dutch words made by 20 participants [15]. The error ra-
tes of the simulation were quite similar to those of actual par-
ticipants, being 4% word and 7% non-word misclassification,
whereas human subjects had 6% and 5% error rate respectively.
Additionally, average correlation between model estimates and
human subjects response latencies was r = .47, whereas the cor-
relations in response latencies between subjects were ranging
from r = .1 to r = .3, indicating that the model represents gene-
ral (or average) tendencies of human subjects well.

Further implementations of DIANA tackled other issues,
such as modelling the tendency of response latencies to a sti-
mulus to correlate with response latencies to a number of pre-
vious stimuli [16]. These local speed effects (such as learning
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or fatigue [17]) affect response latency to a particular stimulus
in addition to the underlying processing mechanism shared by
all participants, long term effects (such as e.g., age or general
cognitive abilities), and the deliberate participant strategy taken
in the experiment. By applying a filter that takes into account
local speed effects, the correlation between participants them-
selves and the correlation of DIANA to the average participant
was shown to increase. Yet another procedure that took into ac-
count word frequency, required larger differences in activation
between the winner and the runner-ups, and added extra choice
time if there is a close competitor at the word offset, further in-
creased the average correlation between DIANA’s estimates and
actual participant response latencies to r = .76 [18].

Even though DIANA is language-independent, it was im-
plemented outside of Dutch only once, using pilot data from
MALD [18]. This dataset included a total of 1200 word types
with responses from 10 to 12 participants out of the 250 MALD
pilot sessions. The participant sample was heterogeneous as it
included native and non-native speakers of English. The results
of the simulation still showed satisfactory performance of DI-
ANA, with correlations with the average participant being r =
.45.

1.1. The present study

The goal of the present study is to expand on the previous ap-
plication of DIANA to English [18]. Our first aim is to deve-
lop acoustic models of Western Canadian English using spon-
taneous speech as a basis. We opted for spontaneous speech
as our training material for three reasons. First, acoustic mo-
dels are usually trained using careful speech corpora such as
TIMIT [19], and we intend to compare models trained on these
different types of corpora at a later time. Second, the speaker
that recorded the MALD items speaks a Western Canadian vari-
ety of English, same as the speakers in the spontaneous speech
corpora we used for training, and the participants in the behavi-
oral experiment. Third, spontaneous or conversational speech is
what listeners are most often exposed to [20], rather than care-
ful speech – we deemed using spontaneous speech would better
represent the kind of ‘training’ actual human listeners receive.

Our second aim was to test model performance when re-
cognizing novel isolated word recordings and when simulating
between-word competition as a function of time. Importantly,
we also wanted to simulate the lexical decision task, observing
both lexical decisions made and estimates of response latencies,
and how they compare to participant performance in MALD.

2. Methods
2.1. Behavioral experiment

The auditory lexical decision experiment included 26,793
words and 9,592 pseudowords generated using Wuggy [21],
which was adapted by the authors to create a phonetic data-
base. We used the CMU Pronouncing Dictionary V0.6 [22] for
pronunciation referencing, expanded for words which were mis-
sing entries. The stimuli were recorded by a single 28-year-old
male speaker of Western Canadian English. The words were
then split into 67 separate lists each containing 400 words, and
paired with one of the 24 lists of 400 pseudowords each.

The participant pool included 231 monolingual native Ca-
nadian English listeners (180 female, 51 male, aged 17 to 29),
forming a more homogeneous sample than in [18]. The par-
ticipants were allowed to participate up to three times, never
listening to the same list of words or pseudowords. Most par-

ticipants only completed a single list, and the total number of
MALD sessions was 284. Altogether, the database consisted of
227,179 participant responses.

A single session of the auditory lexical decision task contai-
ned 400 words and 400 pseudowords presented in random order.
Each trial was initiated by a 500ms fixation point, followed by
the sound stimulus presented over the headphones. Participants
could respond during stimulus presentation and their response
time was limited to 3000ms, after which the experiment would
proceed to the next stimulus. Participants were instructed to
use their dominant hand to respond to words, and their non-
dominant hand to respond to pseudowords.

2.2. Model training

The training procedure was performed by automatic speech re-
cognition training using Hidden Markov Model Toolkit (HTK;
[23]). It was conducted in three steps, and at every step the
training was performed in three iterations of re-estimation. We
used two unpublished spontaneous speech corpora to create
the initial models. The Western Canadian English spontane-
ous speech corpus (WCE) includes recordings of 11 subjects
making telephone calls, and the Corpus of Spontaneous Multi-
modal Interactive Language (CoSMIL) contains recordings of
conversations of 8 pairs of participants (16 participants total).
The recordings were separated into sounds shorter than 10 se-
conds by their existing transcribed interval. Intervals longer
than 10 seconds were manually split into two approximately
equal intervals at the middle of a silent pause in speech. In-
tervals consisting of only silent pauses, laughter, breathing etc.
were excluded. The number of separate sounds created in this
manner was 20,086, with a total duration of just over nine hours.
These sounds were downsampled to 16 kHz (see [23]). Despite
procedures applied to avoid sound clipping, a small number of
sounds (31) resulted in a warning, and these sounds were exclu-
ded. Training creates estimates for all sub-lexical units (in this
case phones) as three-state hidden Markov models (HMMs),
with their acoustic characteristics represented by Gaussian mix-
ture models (GMMs). Since the training sounds included stret-
ches of speech with two or more connected words, the models
also need to correctly account for short pauses between them.
The acoustic models generated on the spontaneous speech re-
cordings were therefore further extended to include estimates
for short pauses (forming the so-called ‘sp models’).

At this point every three-state HMM (i.e., phone) is repre-
sented by a single GMM. Increasing the number of GMMs per
state has been shown to reliably reduce error rate when models
are used for word recognition [24]. The second step in model
training was then to increase the number of Gaussian mixtures
per phoneme state to the usually recommended 32. This was
done by doubling the number of states at each step — from 1 to
2, 4, 8, 16, and finally 32.

The final part of the training procedure was speaker adap-
tation, with actual recordings of the speaker the model will be
used on implemented to realign the acoustic model estimates.
We wanted to test how many recordings are minimally required
to create adequate acoustic models, which would allow us to
use more of the recordings in tests and simulations. We created
separate models differing in the number of MALD word (not
pseudoword) recordings used for adaptation. The model that
was adapted on the smallest number of MALD words used only
MALD list number 1 (400 words). The remaining 19 models
each used one additional list with 400 words, with the model
adapted on the largest number of MALD words adapted on lists
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1 to 20 (8,000 words). Each list included just under 4 minutes
of speech.

2.3. Simulations

The most common test for acoustic models is whether they
can successfully recognize words stored in the lexicon in no-
vel speech recordings (free word recognition). The procedure
assigns an activation value to each word in the lexicon based
on the probability of a certain word given the signal. In this
case, our simulation used only bottom-up acoustic information.
The considered lexicon comprised of all 26,793 MALD words.
The models were tested on a total of 1,200 words from three
MALD lists that were not used in the training phase (lists 65,
66, and 67). The best model (one adapted on 4,000 words, see
Section 3) was used in all further simulations described below.

We observed the top three competitors besides the winner
(by creating the so-called N-best lists, in this case it is a 4-best
list), based on their activation strength. The number of compe-
titors was selected arbitrarily and served to assert model plausi-
bility beyond the winning word — misidentification might still
include the target word as highly activated, and top competitors
for correctly identified words should be similar to the winner.
However, since we know speech unfolds over time, sounds were
also split into 20ms frames, and an estimate was made upon ad-
dition of every new frame, with 10 top competitors being consi-
dered. Due to processing such gated sounds being demanding,
we only considered a subset of the CMU lexicon, including all
the words that have three phonemes or less and all the words
that share the first three phonemes with the target word. We
observed both changes in the estimated phone string and at top
four competitors as the signal was unfolding.

We also performed a lexical decision simulation on the
three lists and their corresponding pseudoword lists by com-
paring the best lexical activation and the activation obtained in
a free sub-lexical unit (phone) loop. In the free phone loop, the
language model (grammar) does not include words at all, only
phones, and, optionally, probabilities from moving from one to
the other. In this case, we created the so-called flat phone loop
model (also called zerograms), as all possible transitions from
one phoneme to the other were treated as equally possible. If
a sound signal activates a free phone string not in the lexicon
significantly better than it does for any lexical entry (the thres-
hold is set by the researcher), the conclusion is made that the
sound signal is comprised out of a string of segments that do
not match any lexical entry well, making it a non-existing word
i.e., a pseudoword. Conversely, when an actual word is given as
input to the model, the difference between the free phone loop
activation and the best lexical activation should ideally be zero
– meaning that the segments activated by the free phone loop
perfectly match the segments of a certain lexical entry. Such a
result would be unwanted for a pseudoword as input, as it would
indicate not only that the free phone loop activated wrong pho-
nes, but also that the activated phones matched a string existing
in the lexicon. Therefore, one would expect a bimodal distribu-
tion of differences, in which the discrepancy between the free
phone loop and the best lexical activation is small for one group
of sounds (words), and large for the other (pseudowords), with
minimum overlap between the two groups. When generating
these estimates, since activation is cumulative, we divided the
calculated difference in activation by the total number of pho-
nemes in the signal word or pseudoword.

Finally, we estimated responses latencies and compared
them to MALD participant responses. In this case, we used 17

Figure 2: Free word recognition accuracy of the 20 models
adapted for speaker in the three MALD test lists.

MALD lists (6,800 words, lists 51 to 67) and ran a gating simu-
lation as described above, looking at top 20 competitors for any
given signal. We estimated response latencies only for those
words which appeared in the competitor list at word offset and
which had less than 20 competitors remaining, to avoid ceiling
effects when estimating the number of remaining competitors.
Additionally, we included only the words for which there were
at least three correct participant responses. The final number of
retained words was 5,604.

The response latency estimation in DIANA is computed
as the sum of activation, decision, and execution time. Since
many words have minimal pairs only diverging at the end of
the word and since the signal could change into a pseudoword
at any point as it unfolds, both simulations and participant per-
formance in auditory lexical decision experiments most often
do not show a clear winner before word offset. Therefore, the
model needs to account for the additional cognitive processing
occurring after the acoustic information is no longer available.
To do so, DIANA estimates the number of remaining plausi-
ble options (word and pseudoword alike) and, based on that
number, the corresponding choice reaction time (using ‘Hick’s
law’). In other words, response latency is depending on compe-
titor activation, the number of plausible competitors at word off-
set, and a fixed increase in latency which accounts for execution
time (200 ms). Estimates generated for words in this fashion
were then compared to mean logged response times provided
by 64 unique participants in the MALD experiment.

3. Results and discussion
Twenty models adapted on the different number of MALD
words were compared (Figure 2) in free word recognition. The
results show a large increase in accuracy up to 4,000 words (i.e.,
10 MALD lists). After that, accuracy remains roughly the same
and never reaches 90% for any of the lists. Therefore, we deci-
ded to use the models adapted on 10 lists for all future simula-
tions.

Accuracy is not the same for the three test lists. The most
probable explanation is that certain lists are more similar to each
other when it comes to their acoustic content. For example,
list 67 would then include a larger number of phones that are
more often erroneously classified, due to them not occurring as
often in training or adaptation material. Alternatively, certain
lists may contain words with a larger number of close competi-
tors, making the selection of the correct winner more difficult.
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Table 1: Activation of competitors at word offset for two exam-
ple words.

Target word Competitor Activation
BROWSE -2,890.86

BROWSE BROWS -2,890.86
(correct) BROWNS -2,938.98

ROUNDS -2,941.75
USHERED -4,475.29

ASSURED ASSURED -4,485.90
(incorrect) ISSUED -4,522.81

PRESSURED -4,549.67

We also noticed considerable volatility in free word recognition
with even small changes in the adaptation material (see e.g.,
drops in accuracy for list 67 at training list 12 and 65 at trai-
ning list 14) which we will not discuss in detail here, but which
in addition to relatively low recognition accuracy warn that the
current acoustic models need improvement.

However, even with these issues, Table 1 shows that compe-
titors with high activation values tend to be similarly sounding
words, regardless of whether the correct winner is selected or
not. In the first case, the sound signal was the word browse,
and the target word had the highest activation value at signal
offset. However, word brows, which has identical pronuncia-
tion as described in CMU dictionary, has the same activation
value. Close competitors included a word with an additional
nasal (browns), and a word without the initial stop, but with an
additional word-medial stop (rounds). In the second case, the
correct word assured was not the winner, but it was a very close
runner-up to a similar word ushered.

The simulations of competition as a function of time also
provide the expected outcome — at first, there are no compe-
titors that are distinguishable as potentially better than others,
then a number of competitors rise and fall in activation, with
very little difference between them, and, finally, a small sub-
set of competitors starts separating from the group and rising
in activation, with potentially one of them separating from this
group as well, emerging as the clear front-runner.

Lexical decision task simulation was based on differences
in activation in free word recognition and activation in the free
phone loop. Words in comparison to pseudowords indeed ten-
ded to have a smaller difference in activations (Figure 3). Ho-
wever, the results of the simulation also revealed certain issues
in the acoustic models. As can be seen in the figure, a number
of pseudowords were matched with a lexical entry (having the
difference of activations equal to zero), which should not hap-
pen unless the acoustic models make errors in the free phone
loop i.e., in recognizing phones. Similarly, certain words have
a difference in activations larger than 0, again indicating errors
in the free phone loop.

The final step in the lexical decision simulation is to select
the activation difference value that will serve as the threshold
between the two choices participants can make. If a ‘balanced
response regime’ is assumed, placing the threshold so as to have
approximately the same amount of ‘word’ and ‘pseudoword’
responses, the error rates for the three lists are 20.87%, 20.01%,
and 17.60%. MALD participants completing the same lists have
an average error rate of 13.14%.

Finally, comparing the response latencies estimated by DI-
ANA to those obtained by participants (averaged logged partici-
pant response latency) showed moderate correlation, similar to
that observed in previous applications of the model (r = .46).

Figure 3: The difference between free word and free phone loop
activation values divided by the number of phones for words
and pseudowords.

Additionally, estimates also seem to describe the actual time re-
quired for the response well, as the mean response latency for
our participants was 943 ms, while DIANA estimates average
at 976 ms.

4. Conclusions
The acoustic models we created on the basis of spontaneous
speech corpora seem to adequately capture the basic assump-
tions of spoken word recognition. In free word recognition,
the models correctly recognized the target word from a lexicon
of nearly 28,000 words in 85-90% of cases. The models also
successfully simulate word competition at speech signal offset
and as the speech signal unfolds. However, error rates are still
relatively high, which is especially visible when simulating the
lexical decision task i.e., the word/pseudoword response. The-
refore, the models need improving before they can perform on
par with existing acoustic models for North American English,
either by including more recordings or by addition of careful
speech corpora.

The reaction latencies estimated using DIANA remain sa-
tisfactory, even as they are correlated with averaged response
times from only 3 to 5 participants. An additional source of
variability that DIANA is unable to model yet are local speed
effects (fatigue, distraction, attention fluctuation during the ses-
sion, etc.) and many long-term and medium-term differences
between participants (even whether a participant plays video-
games or not). Our future attempts will also attempt to account
for stimuli characteristics by including top-down weights i.e.,
word frequency effects, other lexical predictors, and conside-
ring morphological complexity of the target word.
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