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Abstract
Speaker diarization (answering ’who spoke when’) is a widely
researched subject within speech technology. Numerous exper-
iments have been run on datasets built from broadcast news,
meeting data, and call centers—the task sometimes appears
close to being solved. Much less work has begun to tackle
the hardest diarization task of all: spontaneous conversations in
real-world settings. Such diarization would be particularly use-
ful for studies of language acquisition, where researchers inves-
tigate the speech children produce and hear in their daily lives.
In this paper, we study audio gathered with a recorder worn by
small children as they went about their normal days. As a re-
sult, each child was exposed to different acoustic environments
with a multitude of background noises and a varying number of
adults and peers. The inconsistency of speech and noise within
and across samples poses a challenging task for speaker diariza-
tion systems, which we tackled via retraining and data augmen-
tation techniques. We further studied sources of structured vari-
ation across raw audio files, including the impact of speaker
type distribution, proportion of speech from children, and child
age on diarization performance. We discuss the extent to which
these findings might generalize to other samples of speech in
the wild.
Index Terms: speaker diarization, language acquisition, spon-
taneous speech, i-vectors

1. Introduction
At a glance, the problem of automatic, unsupervised speaker
diarization (deciding who is talking at a given time) appears to
be a solved task. For instance, in a 2012 review on meeting
recording diarization [1], the top-performing system achieved a
4% Diarization Error Rate (DER) for single distant microphone,
multi-talker settings. Such accurate diarization is also needed
for analyses of the messier acoustic environments characteristic
of our everyday language use. In particular, audio recordings
gathered with personal devices worn by small children have
enormous potential for shedding light on how children learn
language.

While it is obvious that typically developing children come
to speak their ambient language(s) effortlessly, it is less clear
how exactly this process comes about. Surely children learn
about language from what they hear, but what exactly is avail-
able in their speech environment for them to learn from? By
recording children’s at-home language environments, we can
inspect what children say and hear on an everyday basis [2].
In turn, we can better hypothesize about the learning mecha-
nisms that process this linguistic ‘input’ into full-fledged lin-

guistic knowledge. It is imperative to include geographically,
culturally, and linguistically diverse populations in this process
so that we capture the whole range of early language experi-
ences that language-learning children encounter [3]. Findings
in this domain also indirectly further efforts on language doc-
umentation, preservation, and revitalization, as well as inform
clinical applications.

Advances in recording technology have broadened our view
of children’s speech environments—we can now gather record-
ings that last whole days or weeks—and we can better appreci-
ate the diversity of activities and interactive environments that
make up children’s daily linguistic experience. An enormous
challenge now is how to extract useful information from these
recordings, which quickly accumulate to hundreds or thousands
of hours, and can therefore no longer simply be manually di-
arized and annotated for speech properties.

That said, the use of diarization with child audio remains
relatively rare. Over the years diarization systems have typi-
cally focused on broadcast news and telephone conversations
between adults with reasonably clean audio. Advances in sys-
tems have also been evaluated based on these datasets [4], and
only some diarization studies have been performed on chil-
dren’s speech (e.g, [5, 6])

Daylong child language recordings present a stimulating
next challenge for diarization systems. A typical day includes
variable background noise conditions as the child moves be-
tween various reverberant and dampened spaces inside and out-
side of their home (see Fig. 1). The recording devices used
are typically equipped with one or two omnidirectional micro-
phones. Among the many voices that may be captured over the
day, most come from relatives who often sound similar to each
other; much more similar than two speakers in an average busi-
ness meeting or clinical recording.

There is increasing interest in solving talker diarization in
these difficult daylong recordings. Using their patented record-
ing device, researchers associated with the LENATM Foundation
have gathered an extensive dataset of daylong recordings vary-
ing in child age and socio-economic status, and have developed
a set of algorithms to parse the audio (e.g., [7, 8, 9, 10]). Their
proprietary software extracts the recordings and processes them
as follows: It first extracts 36 mel frequency cepstral coeffi-
cients and their deltas in 25 ms windows every 10ms. It then an-
alyzes these features with an iterative system that performs joint
vocalization activity detection and talker diarization to break
the stream into uniform segments that are minimally .6 sec-
onds long. This process is performed with a Minimum Duration
Gaussian Mixture Model (MD-GMM) combined with dynamic
programming to find the sequences with maximum likelihood.
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Figure 1: Representative moment from a Mayan daylong
recording, captured via a mother’s chest-worn camera with a
fish-eye lens. The infant (dark blue) and seven of her family
members (light blue) take an afternoon break on their patio,
which is made of poured concrete (pink) and partly covered with
hanging clothes (yellow).

The MD-GMM model had been trained on over 150 hours of
recordings (30 minutes extracted from 309 daylong recordings,
gathered from as many American English-learning children)
that were segmented by professional transcribers, eventually re-
sulting in eight categories: Key Child, Other Child, Adult Male,
Adult Female, TV/other electronic sound, Noise, Silence, and
Overlapping sound (overlap of any two categories, e.g., Key
Child + Noise). In evaluating their system [11], they find 71–
86% agreement in terms of broad categories of “adult”, “child”,
“TV”, and “other”, the latter including all overlap regions. Sub-
sequent independent research has largely confirmed these high
levels of accuracy (e.g., [12, 13]).

Although their results are prima facie promising, further in-
dependent work is needed to improve some aspects of the cur-
rent system. First and foremost, the LENATM software is pro-
prietary and can neither be modified nor interrogated beyond
the descriptions found in published work. Moreover, it cannot
be applied to recordings that have not been collected with their
recording device (the LENATM DLP). Second, their approach
effectively removes regions with background noise, as well as
any lively spontaneous conversation that may contain a great
deal of overlap, thus biasing the initial sample towards “easy”
regions. In an attempt to keep their data comparable, other re-
searchers have tended to use the same sampling strategy, and we
thus have no reliable, generalizable estimate of global diariza-
tion performance in daylong recordings. Finally, the LENATM

Foundation and others working in their wake have made the
analytic choice of collapsing across all female adult speakers,
all male adult speakers, and all child speakers for most accu-
racy reports. This means that the LENATM-based reports are
not penalized for confusing the mother with other females, or
the target child with other children. Yet it would be very infor-
mative to provide accuracy estimates that take into account the
real identity of these different conversational partners.

1.1. Main goal

Child-centered audio recordings probably constitute the most
difficult, yet interesting, challenge facing current speaker di-

arization systems. Previous reports of speaker diarization per-
formance were based on a single system and may suffer from
some biases. Therefore, our main goals were to assess perfor-
mance of current off-the-shelf diarization systems in such diffi-
cult settings and to explore salient avenues to improve the per-
formance, e.g., via retraining.

2. Methods
2.1. Corpus

The third author has collected a large corpus of daylong record-
ings from children who are growing up in traditional, non-
Western, preindustrial societies [14, 15]. The present paper
focuses on 10 hours from that corpus which have been care-
fully annotated jointly by the third author (who is linguistically
trained) and a native speaker of the language who personally
knew the recorded families. Therefore, these data can be treated
as a high standard against which to compare the performance of
automated diarization tools.

The ∼10-hour at-home recordings come from 10 Tseltal
Mayan children between the ages of 2 and 36 months who live
with 3–11 other people (0–5 of whom are siblings). So both (a)
the rate and type of vocalizations made by the children and (b)
the number and types of other speakers present varies greatly
across children. For each child, there is one hour of annotated
audio, divided into 19 clips sliced out of the original recordings.
The audio scenes vary dramatically, even within a single child’s
clips, as the child moves from one activity to another over the
course of the day. The 19 annotated clips from each of the 10
recordings were selected in multiple ways: random sampling (9
x 5 minutes), or hand-selected moments of high talk or interac-
tion by the child (9 x 1 minutes + 1 x 6 minutes).

2.2. Processing and analyses

Our dataset included 203 clips, 8 of which did not have any
speech and were thus discarded. We randomly split the families
into training (N families = 5; N clips 17–21 per family, ages
2–36 months) and generalization (N families = 5; N clips 18–
21 per family, ages 4–32 months) data sets to ensure that the
training set covered the whole range of child ages.

The recording device had two omnidirectional micro-
phones, one slightly closer to the child’s mouth (∼20 vs. 22
centimeters). We extracted the channel closer to the child’s
mouth from the audio and extracted the speech intervals as the
segments where one or more people were speaking from the an-
notations. These two information sources were the input given
to the diarization system.

We used the i-vector based system using a PLDA scoring
metric [16], followed by clustering, to compute the diarization
error rate for each of the audio files. We used the Kaldi pipeline
to run the system [17]. Mel Cepstral Frequency Coefficient
(MFCC) features were extracted from the audio files with a win-
dow size of 25 ms and a stride of 10 ms. These features were
used to train the background model consisting of a 2048 mix-
ture component GMM. Following this the T-matrix was trained
and i-vectors were obtained. These i-vectors were obtained at
every 150 ms with a 75 ms stride for evaluation and for the data
used in training, we extract 300 ms i-vectors for every 10 s.
The i-vectors are of dimension 128. A PLDA scoring is applied
on these i-vectors to compute the similarity between each pair.
The i-vectors obtained from the training dataset (depending on
the training regime, as explained below) was used to train the
PLDA system after which the evaluation data i-vectors (always
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the Tseltal data) were scored. These scores were then clustered
using agglomerative hierarchical clustering to group all scores
belonging to individual speakers together. The stopping crite-
ria in the clustering stage is based on a threshold which is ob-
tained using unsupervised calibration by fitting a two mixture
GMM on the PLDA scores. This parameter proved to be an im-
portant factor during experimentation wherein we observed that
the DER values changed significantly on changing the calibra-
tion score.

We explored a variety of training regimes during our ex-
periments. The first dataset we chose for our analysis was
LibriSpeech [18], which is a collection of stories read aloud
by a number of different speakers in English. This corpus is
clean and free of any background noise or disturbances. Using
this as our baseline, we experimented with training on different
datasets, as follows.

Keeping in mind that the Tseltal dataset analyzed in this
paper is a noisy corpus—with many background sounds, ani-
mal sounds, adult speech (dominated by females), and sibling
speech in addition to the child’s own speech—we added the
AMI corpus [19] to the training set. The AMI corpus contains
recordings of meetings consisting of spontaneous speech with
a natural room reverberation and overlapping speech. Since
the AMI corpus is male dominated, to balance the gender ra-
tio we also used the Switchboard cellular dataset [20], a speech
corpus on mobile phone conversations. We picked out all con-
versations having at least one female talker taking place in ei-
ther an outdoor or indoor setting. To account for the child
speaking, we used the Paidologos dataset, which are laboratory
recordings of words in isolation spoken by children in English,
Japanese, Greek, and Cantonese [21, 22, 23, 24], available from
the CHILDES repository [25]. To simulate the Tseltal environ-
ment, we augmented this dataset with babble, reverb, and noise
[26].

3. Results
The average DER collapsing across all clips and all systems
was 48.2%, with a range between 0 and 86.2%. Anguera and
colleagues’ (2012) review [1] show an average DER between 4
and 32% for a range of systems applied to a varied set of meet-
ing recordings. Thus, the first conclusions may be that these
family-based recordings are indeed more challenging than the
meeting data that has been the focus of diarization attention in
the recent past. Overall, systems underestimated the number of
speakers when the audio files had a large number of annotated
talkers.

Manual inspection suggested that DER changed as a func-
tion of training regime at the clip level. For example, on one
file the DER was 48.9% when trained on LibriSpeech alone,
while the DER dropped to 19.2% when trained on the combi-
nation of AMI, augmented Paidologos, and Switchboard cellu-
lar. However, statistical inspection of performance across the
different training systems suggested that the impact of the train-
ing regime on performance was not statistically significant (all
p’s > .05), and only the threshold manipulation helped (all p’s
< .05), with gains against all other systems of about 6% DER
for the .7 threshold, and of about 8% DER for the .8 threshold.
These systems may be outperforming the others for the wrong
reason: the best-performing system estimates that there is only
one speaker for all clips.

We additionally observed that certain clips exhibited a very
consistent performance (i.e., a very low DER or very high DER)
regardless of the training dataset. This suggested that gaining

Figure 2: Illustration of speaker identity in the gold annota-
tion versus two of the systems’ output in a file yielding average
scores. Notice particularly the complexity in speaker overlap
and turn-taking in the gold (top row of annotation).

an overall insight on performance over all families and clips is
not as productive as analyses on each clip separately. We thus
explored variability in clip performance. We predicted that the
following would lead to better performance (lower DER):
• in recordings with older children, they and their same-age

peers will have more recognizable speech (closer to that
which the speech diarization systems have been trained on),
thus leading to higher performance with child age;

• longer turns, which would be easier to classify;
• fewer speakers, which reduces the chance of confusion errors;
• a higher proportion of adults, which is a better fit to data used

in the past;
• clips with more diverse speaker profiles, which are easier to

classify (i.e., clip with a child + female adult + male adult,
versus a clip with 3 children);

• clips with less speech (and thus random, over selected, clips),
since less speech means fewer opportunities for error.

We also hypothesize that further study on the scoring tech-
nique as well as the calibration methodology from the system
perspective could lead to an improvement in DER with the
current dataset. Therefore, we fit a linear regression predict-
ing DER from the best-performing system (trained on AMI,
the augmented Paidologos data, and the Switchboard; thresh-
old set at .8) from the child’s age, the average turn duration in
the clip, the number of people who spoke, their diversity (on a
three-point scale, counting the presence of female adults, male
adults, and children separately), the proportion of speakers who
were adults as compared to children, controlling for the family’s
ID. Results should be taken with a grain of salt since the data
violated equality of variance. This model was overall signifi-
cant: F(14,177) = 19.72, p < .001; and it explained a substan-
tial proportion of variance: R2 = .58. The overall number of
speakers, child age, average turn duration, whether the clip was
randomly or purposefully selected, and the family ID signifi-
cantly predicted diarization performance. Figure 3 shows that,
unsurprisingly, the system performs worse when more talkers
were present in the clip [β = 7.84 (0.81)]. Also as predicted,
longer turns led to lower error rates [β = -8.62 (4.34)]. How-
ever, counter to predictions, age was positively associated with
DER: clips from older children had higher error rates [β = -
0.54 (0.22)]). Also, clips that had been selected to have a greater
amount of speech or higher talker change rate in fact had lower
DER, i.e. higher performance [β = -9.12 (2.4)].

4. Discussion
Our findings confirm that daylong recordings of children’s nat-
ural language environments are incredibly challenging for cur-
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Figure 3: Diarization error rate as a function of the number of
speakers found in the gold human annotation. Each dot is a
clip, and a dot’s color indicates which of the 10 recordings it
came from.

rent diarization systems. Based on a variety of clips extracted
from daylong recordings, we estimate the DER from current
systems to be no lower than 40%. This contributes some much
needed unbiased estimations regarding the accuracy of auto-
matic diarization systems.

We had expected difficulties due to higher voice similarity,
more variable number of participants, shorter turn duration, and
more overlap than in previously studied meeting datasets. Al-
though the first two are probably true, at least in this dataset the
turn duration and level of overlap is comparable to that reported
for meetings achieving much better DERs. Indeed, Anguera
and colleagues’ (2012) review [1] estimates an average turn du-
ration of 1.4 seconds, with 7 to 16% overlap for meeting data
(on which 4% DER has been documented), whereas turns in
our data were an average of 1.1 seconds long with 12% over-
lap. Our regression analyses suggested that, while shorter turns
led to lower performance, overlap itself did not explain signif-
icant variance. Beyond these factors, the enormous difference
between the meeting accuracy (50% here versus minimally 4%
to 25% across a range of systems in meeting data [1]) indirectly
suggests that voice similarity and variability or talker number
pose a formidable challenge for current diarization systems.
While we could not test for voice similarity effects (beyond
broad classes of male/female adult and child, which was not
significant), our regression did confirm that a larger number of
talkers led to lower performance. Additionally, we found that
clips selected because they had a lot of child speech or active
verbal interaction between the child and others actually led to
higher performance than a random selection, contrary to our ex-
pectations based on the LENA work. Overall, we believe there
is a great deal more work to be carried out to understand which
factors are most difficult about daylong recordings, and how to
address these roadblocks.

Perhaps the most surprising finding is that training did not
help improve performance. This is far from obvious, as the

idea that in-domain data helps is almost a truism. Yet pre-
training on a corpus containing children’s voices, including
children’s voices augmented with noise, did not significantly
change DERs. And while we did manage to build a system
that outperformed the others, it did so by collapsing all speak-
ers onto one, which is conceptually unacceptable.

One may wonder whether some top-down information
could help raise performance. For instance, it would be easy to
provide systems with the number of family members. However,
the likelihood of each talking at a given time in the recording is
completely unknown. Almost every family provided clips with
the entire range of number of talkers for that family, so it is
unlikely that one will be able to constrain inferences based on
the composition of the family. A semi-supervised system that
provides annotators with a first classification (e.g., [27]) may,
however, be more useful.

Might our results generalize to other recordings “in the
wild”? All of our recordings were made in a rural, traditional
setting with (mainly) large families. Therefore, we believe that
the task we have tested here is harder than that which will be
encountered with recordings from typical Western middle-class
households. In an average household in the USA, there are 1–2
parents and 1–2 children, whereas the average household size in
the present sample is 7 people, with a range of 4 to 14. Further
work should revisit these questions with recordings that are not
centered on children. Indeed, a growing field of research is in-
vestigating the possibility of using adults’ speech as a potential
biomarker (e.g., [28]). We believe that adult-centered record-
ings will be, on average, less challenging than child-centered
ones, with difficulty levels increasing for certain neurological
conditions affecting speech production (e.g., aphasia).

5. Conclusions
In sum, this paper provides the first systematic assessment of
speaker diarization of audio recordings collected as children go
about their normal day. We find that performance is much lower
than that found in previously “difficult” data, notably multi-
talker meetings. A main cause for errors is found in marked
misestimations of talker number, with increased difficulty when
more talkers are present, even after controlling for turn duration.
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