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Abstract

In Deep Neural Network (DNN) i-vector based speaker
recognition systems, acoustic models trained for Au-
tomatic Speech Recognition are employed to estimate
sufficient statistics for i-vector modeling. The DNN
based acoustic model is typically trained on a well-
resourced language like English. In evaluation condi-
tions where enrollment and test data are not in English,
as in the NIST SRE 2016 dataset, a DNN acoustic model
generalizes poorly. In such conditions, a conventional
Universal Background Model/Gaussian Mixture Model
(UBM/GMM) based i-vector extractor performs better
than the DNN based i-vector system. In this paper, we ad-
dress the scenario in which one can develop a Automatic
Speech Recognizer with limited resources for a language
present in the evaluation condition, thus enabling the use
of a DNN acoustic model instead of UBM/GMM. Exper-
iments are performed on the Tagalog subset of the NIST
SRE 2016 dataset assuming an open training condition.
With a DNN i-vector system trained for Tagalog, a rel-
ative improvement of 12.1% is obtained over a baseline
system trained for English.
Index Terms: i-vector, speaker recognition, deep neural
networks

1. Introduction
State-of-the-art speaker recognition systems employ
the i-vector Probabilistic Linear Discriminant Analysis
(PLDA) framework [1]. A conventional implementation
uses a Universal Background Model/Gaussian Mixture
Model (UBM/GMM) to compute sufficient statistics in
order to estimate the speaker model, also known as the
identity vector (i-vector). A successful extension of this
framework replaces the UBM/GMM with a Deep Neu-
ral Network (DNN) based acoustic model (AM) trained
for Automatic Speech Recognition (ASR) [2, 3, 4, 5, 6].
Two common techniques exist under this extension. In
the first technique, termed DNN i-vector, the AM has
acoustically well-defined targets (typically, senones) that
replace the components of the UBM/GMM. During AM
training, the targets are bootstrapped with alignments
from a Hidden Markov Model/Gaussian Mixture Model
(HMM/GMM) system. In the other common technique
using DNNs in i-vector systems, a Stacked Bottleneck
Network (SBN) is trained for acoustic modeling. Bottle-
neck Features (BNF) are obtained from the SBN, which

are then combined with conventional short-term acous-
tic features such as the Mel Frequency Filterbank Co-
efficients (MFCC) [7].

In both the above mentioned techniques a labeled
corpus is required to train the ASR system. In order
to develop systems for benchmark datasets that contain
speech only in English, such as the NIST SRE 2010
and 2012, Fisher and Switchboard datasets can be uti-
lized [2, 8, 9]. These datasets contain several thousand
hours of transcribed speech data. In matched language
conditions, the DNN i-vector performs significantly bet-
ter than the UBM/GMM i-vector system. However, on
datasets such as the NIST SRE 2016 dataset that contains
two unseen languages in the evaluation condition, a DNN
i-vector system with the AM trained for the English lan-
guage performs worse than a UBM/GMM i-vector sys-
tem [10, 11]. This suggests that the UBM/GMM gen-
eralizes better than the DNN i-vector. The degradation
in the performance of DNN i-vectors may be attributed
to phonetic, acoustic and duration mismatch. In [12],
a multilingual bottleneck (MLB) system is trained with
14 languages from the BABEL program. Neither of the
two evaluation languages, Tagalog (TGL) and Cantonese
(YUE), were present in those 14 languages. Once again,
the results obtained were not better than the GMM i-
vector system.

In this paper, we study the effect of the phonetic mis-
match arising due to training a language-dependent DNN
to extract posteriors for i-vector modeling. In particular,
we address the scenario in which one has access to data
to train a low-resource ASR system for a language to be
seen during evaluation. We hypothesize that a DNN i-
vector system trained on target language (i.e. language
that will be seen in the evaluation condition) improves
the performance of the DNN i-vector system. The analy-
sis is conducted through text-independent speaker verifi-
cation experiments on the TGL subset of the NIST SRE
2016 dataset. Tagalog BABEL corpus is used to train the
DNN AM. We note that a similar hypothesis was consid-
ered in [13]. However, no consistent improvements were
shown when using language dependent systems. Two im-
portant distinctions in our work are: (1) the use of dataset
variability compensation and (2) adaptation of the back-
end with unlabeled data.

There have been several attempts to improve speaker
recognition systems using DNNs. In particular, speaker
embeddings proposed in [14] deserves a mention as it
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targets the same evaluation scenario (NIST SRE 2016).
Large amounts of data are generated to train the network
for speaker discrimination. However, a DNN i-vector
system offers the potential to exploit content information
in a speech recording. Thus, our understanding can also
be extended to text-dependent speaker verification where
DNN i-vectors have been show to be useful [5].

The rest of the paper is organized as follows: in Sec-
tion 2 the i-vector framework for speaker recognition is
introduced. This is followed by a description of the DNN
i-vector system and its adaptation to TGL in Section 3.
In Section 4, the results of experiments on the NIST SRE
2016 and 2010 datasets are presented.

2. I-vector system
The i-vector extractor projects Gaussian mean supervec-
tors on a low-dimensional subspace called total variabil-
ity space (TVS) [1]. The underlying variability model
used for i-vector extraction is

s = m + Tw, (1)

where s is the supervector adapted with respect to a
UBM-GMM from a speech recording. The vector m
is the mean of the supervectors usually obtained from
the UBM-GMM, T is the matrix with its columns span-
ning the total variability subspace and w is the low-
dimensional i-vector representation. In the above model,
the i-vector is assumed to have Gaussian distribution with
zero mean and unit variance as prior distribution.

Given a sequence of MFCC feature vectors
{x1,x2, . . . ,xt}, the first-order statistics (f ) are esti-
mated to obtain the i-vector representation. The subvec-
tor fc of f is given by

fc = Σ
− 1

2
c

(∑

n

γn,cxn − µc

)
, (2)

where f = [f t1, f
t
2, . . . , f

t
C ]t, C is the number of mixtures

in the UBM/GMM, µc, Σc are the mean and covariance
matrix of the cth mixture, and γn,c is the posterior for
the nth frame of speech with respect to the cth mixture
component.

Given the first order statistics, the i-vector is esti-
mated as follows

w =

(
I +

C∑

c=1

NcT
t
cΣ

− 1
2

c Tc

)−1

TtΣ−1f , (3)

where Tc is the submatrix of T for the cth mixture, Σ is
a block diagonal matrix with each block given by Σc for
c = 1, 2, . . . C and

Nc =
∑

n

γn,c (4)

is the effective number of feature vectors assigned to the
cluster c. The i-vector estimation equation (Equation 3) is

Table 1: Results of blind evaluation on female subset
of the NIST SRE 2016 dataset comparing UBM/GMM
and DNN i-vector systems. Results are reported in terms
of Equal Error Rate (EER). TGL: Tagalog, YUE: Can-
tonese.

System Language EER (%)

UBM/GMM i-vector TGL 14.9
DNN i-vector TGL 15.7

UBM/GMM i-vector YUE 5.9
DNN i-vector YUE 7.8

the Maximum a Posteriori estimate of w assuming Gaus-
sian distribution.

In [2], it was shown that a DNN trained for ASR
can replace the traditional UBM/GMM to obtain γ re-
quired for i-vector estimation. The posteriors obtained at
the output of the DNN forward pass process are used to
compute Nc and f . This technique resulted in large per-
formance gains for speaker verification systems as bet-
ter alignments are obtained with respect to the UBM
components. The results showed that replacing unsuper-
vised training of the UBM components with well-defined
acoustic classes can have a significant impact on verifica-
tion performance.

3. Language dependent DNN
As mentioned in Section 1, the performance of the DNN
i-vector system degrades when the language of the DNN
and that in the evaluation are mismatched. We present
results on NIST 2016 SRE to demonstrate it. Table 1
compares the UBM/GMM and the DNN/i-vector system
on the female subset of the NIST SRE 2016 evaluation
set. The UBM/GMM i-vector is trained with Fisher En-
glish Part I and II, Switchboard Cellular Parts I and II,
NIST SRE 2004, 2005, 2006 and 2008. The UBM, LDA
and PLDA are all trained on the same data. The PLDA
is adapted with unlabeled development data in the NIST
SRE 2016 data. Details of features and voice activity de-
tection are given in Section 4. The DNN i-vector system
was trained on Fisher English Parts I and II and had 1520
targets (senones).

The results on the evaluation set for female speak-
ers presented in Table 1 demonstrate the degradation in
performance, which is contrary to the results observed in
matched language conditions. The UBM/GMM system
performs 7.6% relatively better than the DNN i-vector on
the TGL subset and 24.3% better on the YUE subset.

In this paper, we focus on improving the TGL sub-
system by assuming that we have access to a limited
amount of labeled data for the language. The Babel
Tagalog dataset contains approximately 84 hours of tran-
scribed conversational speech (excluding silence) and
thus is not as well-resourced as English. Out of the 84
hours of speech, approximately 48 hours are from female
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speakers. A DNN based acoustic model is trained with
this limited amount of data. In order to understand the
advantages of using a language dependent DNN we pro-
pose replacing the ENG-DNN (i.e. the DNN trained with
Fisher English) with this DNN trained for TGL (TGL-
DNN). The data used to train the back-end remains un-
changed.

4. Experiments
Speaker verification systems were evaluated on the fe-
male subset of the NIST 2016 SRE dataset (SRE2016)
and the NIST SRE 2010 (SRE2010) dataset [15]. Only
telephone-telephone condition (det5) of the core evalua-
tion are presented for the SRE2010 data. Similarly, only
female speakers from the TGL subset of evaluation are
considered for scoring the SRE2016 data.

4.1. Feature extraction

The front-end used 20 MFCC features with delta and ac-
celeration parameters, extracted every 10 ms using a win-
dow of 30 ms (as used by systems such as [7, 8]). They
were further processed through a short term Gaussianiza-
tion module ( [16]) with a context of 300 frames. A DNN
based voice activity detector is used, which classifies
each frame of audio as either speech or non-speech. The
frame-level decisions are then smoothed over 300 ms. All
systems presented in this paper use the same feature con-
figuration.

4.2. I-vector baseline

The UBM/GMM i-vector baseline was trained using the
following datasets: The NIST datasets - SRE 2004, 2005,
2006, 2008 and 2008 extended, Switchboard Part II and
Part III, and Switchboard Cellular Part I and II. A GMM
with 2048 components was trained. The i-vector dimen-
sion was 500. LDA and PLDA were trained with only the
NIST datasets. The setup for LDA and PLDA is consis-
tent for all systems presented in the paper. After LDA,
the dimension of the i-vector was reduced to 350.

For the DNN i-vector system, Fisher English Parts
I and II were used to train the DNN with 1’520 out-
put states. We term this system ENG-DNN. We use a
standard DNN architecture with 6 hidden layers and a
final softmax layer. Each hidden layer had 1’024 units
with sigmoid activation function. Although it is common
for ASR systems to use only 13 MFCC dimensions with
delta and acceleration, we preserved the same MFCC
configuration for both ASR and i-vector systems. It was
observed the Word Error Rate (WER) of ASR systems
dropped by ≈ 2% absolute (from 40% to 42%) with the
increased number of co-efficients.

In order to exploit unlabeled domain-dependent data
for the evaluation set, the PLDA was adapted in an un-
supervised fashion using Kaldi [17]. The unsupervised
adaptation updates the covariance estimates of the PLDA
resulting in domain-dependent back-ends.

All i-vector systems were trained with the implemen-

tation in [18] (following [19, 20]). The i-vectors from
SRE2016 are forcibly zero-centered prior to evaluation
to offset dataset mismatch. This mean is estimated from
the unlabeled development data in SRE2016. This data
will be referred to as SRE16U.

4.3. Tagalog ASR system

The BABEL Tagalog language pack contains approxi-
mately 80 hours of conversational speech to train an ASR
system in Tagalog. This training set will be referred to as
BTGL. Instead of training an ASR system from scratch,
the ENG-DNN trained with the Fisher dataset is adapted
to TGL. The final linear layer followed by the softmax
layer is retrained using mini-batch Stochastic Gradient
Descent. Initially, the targets are bootstrapped by train-
ing a HMM/GMM system using triphones. The DNN
has 1’530 output units with a WER of 53% on the de-
velopment set. The DNN/i-vector system based on this
acoustic model is termed TGL-DNN. The system was
trained with the same MFCC-based feature mentioned
previously. While a more common ASR setup for TGL
uses Perceptual Linear Prediction (PLP) and pitch based
features instead of MFCC, the difference in WER on the
development set was only 3% (from 50% to 53%). There-
fore, to maintain a homogeneous setup the MFCC-based
TGL-DNN was used.

As the amount of data in BTGL is significantly lim-
ited compared to the Fisher English corpus, an ASR sys-
tem with the same amount of data as BTGL is also trained
for English. Henceforth, this system will be termed
ENG40-DNN signifying that only 40 hours of speech
data was used (closely matching 48 hours of data for fe-
male speakers in TGL). This helps us observe the effects
of the amount of training data (and hence the accuracy of
the recognizer) for the DNN.

As an extension, we also compare the results of the
three DNNs on the SRE2010 dataset, which contains
speech in only one language (English). We demonstrate
that the trend of the results obtained on TGL are consis-
tent for English as well.

4.4. Results on SRE 2016

In Table 2, the results with the baseline systems are
compared to the DNN i-vector systems using TGL-
DNN and ENG40-DNN. Using TGL-DNN clearly ben-
efits speaker verification performance. Replacing ENG-
DNN by TGL-DNN and training the i-vector extractor
(T) with only BTGL data results in a reduction of EER
from 15.7% EER to 13.8% giving a relative improve-
ment of 12.1%. Thus, using language dependent DNNs
can certainly bring benefits. Note that only the back-end
(LDA and PLDA) was trained with NIST data. The re-
sults imply that the phonetic variability is better captured
in front-end than in the back-end. PLDA adaptation with
SRE16U does not improve the performance further. The
TGL-DNN also improves over the UBM/GMM i-vector
baseline by ≈ 8% relative.
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Table 2: Comparison of performances of ENG-DNN, TGL-DNN and ENG40-DNN on the TGL subset of the NIST SRE
2016 dataset (SRE2016). ENG-DNN is trained with the entire Fisher dataset, ENG40-DNN is trained with only 40 hours
of data, and TGL-DNN is trained with TGL dataset. SRE16U refers to the unlabeled development set in SRE2016.

System T-matrix data PLDA Adaptation EER

UBM/GMM i-vector NIST SRE16U 14.9
DNN i-vector (ENG-DNN) NIST SRE16U 15.7

DNN i-vector (TGL-DNN) BTGL - 13.8
DNN i-vector (TGL DNN) BTGL SRE16U 13.8
DNN i-vector (TGL-DNN) NIST + BTGL - 15.3
DNN i-vector (TGL-DNN) NIST + BTGL SRE16U 13.7

DNN i-vector (ENG40-DNN) BTGL - 16.9
DNN i-vector (ENG40 DNN) BTGL SRE16U 17.0
DNN i-vector (ENG40-DNN) NIST + BTGL - 17.6
DNN i-vector (ENG40-DNN) NIST + BTGL SRE16U 16.6

When the i-vector extractor is trained with NIST and
BTGL data, significant improvements are achieved only
when adapting the PLDA with SRE16U. One reason is
that the two datasets, NIST and BTGL, are imbalanced.
Without PLDA adaptation the EER reduces from 15.7%
to 15.3%. However, the UBM/GMM baseline is still bet-
ter by 0.4% absolute. After PLDA adaptation the EER
reduces to 13.7% with a relative improvement of 12.7%
with respect to the ENG-DNN baseline and 8% relative
improvement with respect to the UBM/GMM baseline.

The results for ENG40-DNN system are, as ex-
pected, worse than ENG-DNN and TGL-DNN systems.
Once again, training with both NIST and BTGL data pro-
vides better performance than training with only BTGL
and adapting the PLDA with SRE16U. In such a case, an
EER of 16.6% is obtained, which is 2.3% relatively better
than training the i-vector extractor with only BTGL. The
best TGL-DNN system is 17.4% relatively better than the
best ENG40-DNN system.

4.5. Results on SRE 2010

The three systems were also evaluated on the SRE2010
dataset, which contains speech samples only in English.
All results presented are without PLDA adaptation as the
training data is predominantly English. The results on the
telephone-telephone subset (det5) of the core conditions
are presented in Table 3. The UBM/GMM system has
an EER of 2.2%. The DNN i-vector system using ENG-
DNN improves relatively by over 54.4%. However, when
using ENG40-DNN the EER degrades to 1.7%, which is
still relatively 19% better than the UBM/GMM system.
As expected, the TGL-DNN performs worse and has an
EER of 3.1%. When compared with the UBM/GMM
system, the TGL-DNN system is 0.9% worse (absolute).
This trend is consistent with the results presented in Table
2 showing that a well-trained language-dependent DNN
based front-end can certainly provide consistent improve-
ments over a UBM/GMM i-vector system.

Table 3: Comparison of ENG-DNN, ENG40-DNN and
TGL-DNN based i-vector systems on det5. The results
are presented in terms of Equal Error Rate (EER). The
i-vector extractors are trained on the TGL+NIST set.

System EER (%)

UBM/GMM i-vector 2.2
DNN i-vector (ENG-DNN) 1.0
DNN i-vector (ENG40-DNN) 1.7
DNN i-vector (TGL-DNN) 3.1

5. Conclusions
The effectiveness of language dependent acoustic mod-
els for DNN i-vector systems was studied. An acoustic
model for Tagalog was trained and speaker verification
experiments on NIST SRE 2016 with the resulting DNN
i-vector system demonstrated a relative improvement of
12.1% when compared with an acoustic model trained on
English, which is a well-resourced language. The im-
provements in error rates obtained demonstrated the ef-
fect of phonetic variability mismatch on the performance
of the DNN i-vector system.
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