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Abstract
In this paper, we address a constrained training for deep neu-
ral network-based acoustic model size reduction. While the L2
regularizer is used as a modeling approach to shrinking param-
eters, we cannot cut down the unimportant parts because it does
not assume any group structure. The Group Lasso regularizer is
used for the model size reduction approach. Group Lasso can
set arbitrary group parameters (e.g. the column vector norms
of the parameter matrices) as unimportant parts, and make the
parameters sparse. Therefore, we can prune the unimportant
parameters whose group parameter norm is nearly zero. How-
ever, Group Lasso does not suggest a clear rule for separating
parameters close to zero and large in the group parameter space
and hence is unsuitable for the model size reduction. To solve
these problems, we propose a mixture distribution-based regu-
larizer which assumes distributions of norms in the group pa-
rameter space. We evaluate our method on a NTT real recorded
voice search data containing 1600 hours. Our proposal achieves
27.0% reduction compared to the pruned model by Group Lasso
while keeping recognition performance.
Index Terms: automatic speech recognition, deep neural net-
work, group regularization

1. Introduction
In recent years, the Deep Neural Network (DNN) has attracted
attention as an artificial intelligence technology because of its
excellent generalization performance; its application in various
fields has been studied [1]. DNN is also being actively studied
in the field of speech recognition, and it has been observed that
it can achieve high recognition performance if allowed to form
complicated models such as convolutional neural networks and
recurrent neural networks with long short-term memory [2, 3,
4]. The high generalization performance of DNN comes from
its deep layer structure and wealth of parameters.

However, the forward calculation process of DNN incurs
enormous computation costs since the sum of the products of
parameters and inputs is calculated in each layer. If the model
is made more complicated, the response time becomes even
longer. In addition, the parameter storage requirements can be
excessive. The high computation costs are a problem when in-
corporating DNN into small terminals such as smart phones and
wearable devices.

Although methods for reconstructing DNNs with fewer pa-
rameters have been proposed [5, 6, 7], they demand re-training
after the ordinary fine-tuning process. Our approach is to fo-
cus on constrained training because the trained model can be
combined with pruning or compression type operations such as
low-rank matrix factorization using singular value decomposi-

tion (SVD) or decomposition methods, node pruning, a special
network structure, and combinations of node-pruning and quan-
tization [8, 9, 10, 11, 12, 13].

A node pruning method that dispenses with re-training was
proposed by using Group Lasso [14]. The parameters of DNN
are given in matrix form. They regard a column or a row vector
of the matrix as a group, and add a regularization term to the
loss function for minimizing each group norm. As a result, all
parameters belonging to an unnecessary group approach zero
simultaneously in ordinary parameter training. After training,
node pruning is executed by deleting the nodes corresponding
to the groups whose norms are close to zero. However, Group
Lasso does not suggest a clear rule for separating parameters
close to zero and large in the group parameter space and hence
is unsuitable for model size reduction. Moreover, the effective-
ness of Group Lasso against real problems remains doubtful be-
cause it has yet to be applied to large-scale datasets.

In this paper, we propose a novel group regularization
method by modifying Group Lasso. In this regularization
method, the group parameter norm is considered to be a ran-
dom variable and its prior distribution is assumed. We demon-
strate that further reduction in the number of parameters can
be achieved by using a mixture of two Gaussian distributions.
We use 1600 hours of various speech data including actu-
ally recorded voice segments in one of NTT’s voice search
databases, and show the superiority of the proposed method
over Group Lasso.

2. Grouping DNN parameters

Figure 1: The role of column vector w̌ of weight matrix W .
This paper adopts column weight vector norm of W as the
group parameters.

We consider a fully connected neural network with L layers.
Let the number of nodes in each layer be Nl. The output of
the neural network can be obtained by calculating the following
from l = 1 to l = L− 1 :

x(l+1) = W (l)z(l) + b(l), z(l+1) = σ
(
x(l+1)

)
, (1)

where z(l) is the output vector from the l-th layer, z(1) is the
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input vector into the (l + 1)-th layer of the DNN, W (l) is the
weight matrix between the l-th and (l + 1)-th layers, b(l) is the
bias vector added to the (l+ 1)-th layer, and σ(x) is the vector-
valued function that applies an activation function to each el-
ement of a vector : That is, for x(l) = [x1, x2, . . . , xNl ]

T,
σ(x(l)) = [σ(x1), σ(x2), . . . , σ(xNl)]

T, where σ(x) indi-
cates the use of sigmoid as the activation function.

w̌
(l)
i denotes the i-th column vector ofW (l) in Eq.(1). The

role of w̌(l)
i is shown in Fig. 1, using the example of a neural

network with two nodes in the (l − 1)- and l-th layers. Thus, if
the norm of w̌(l)

i is close to 0, we can consider the i-th node in
the (l−1)-th layer unnecessary. Refer to Section 3.4 for detailed
deletion procedures.

3. Regularization and node pruning
Regularization adds a penalty function, called the “regulariza-
tion term”, related to the parameters to a general error function.
The loss function, L, has the following expression when regu-
larization is applied :

L(W) = E(W) +R(W), (2)

where W is a set of weight matrices : W = {W l}L−1
l=1 ,

E(W) is the error function and R(W) is the regularization
term. DNNs that perform classification generally use the cross
entropy function for E(W) [15].

By considering the W that can minimize equation (2),
learning can be done with constraints on parameters. Adding
a penalty term is closely related to Bayesian estimation. The
addition of R(W) to the loss function corresponds to the intro-
duction of prior probability.

3.1. L2 Regularization

The regularization term of L2 Regularization is defined as fol-
lows :

RL2(W) =
λL2

2

L−1∑

l=1

‖W (l)‖2F , (3)

where λL2 is a regularization parameter and ‖ · ‖F is the Frobe-
nius norm. Since L2 regularization takes as its penalty the sum
of squares of elements of W , learning proceeds by making all
elements of W in each layer approach zero as much as possi-
ble. L2 regularization is also called Ridge regularization. L2
regularization corresponds to Bayesian estimation whose prior
distribution is a Gaussian distribution.

3.2. Group Lasso

When Group Lasso is used for DNN node pruning, regulariza-
tion term RGL is defined as follows :

RGL(W) = λGL

∑

g∈GGL

‖wg‖2 +
κGL

2
‖W (1)‖2F , (4)

where λGL, κGL are regularization parameters, ‖ · ‖2 is the L2
norm, and GGL is a set of groups for Group Lasso. Element g
in GGL corresponds to the individual columns of weight matrix
Wl for l = 2, . . . , L − 1. wg is the vector of parameters be-
longing to group g. In this case wg is the column vector w̌ of
weight matrixW .

Group Lasso takes as its penalty the norm of each group
parameter. When DNN learns the minimization of the error

function and RGL simultaneously, the norms of the unneces-
sary groups approach zero. That is, w̌ approaches the 0 vector.
The Lp norm can be used as the regularizer in the first term of
equation (4), but the L2 norm is most popular.

In equation (4), L2 regularization is applied to give weak
constraints to just the first layer. This is to prevent the loss of
the important information of the input layer.

3.3. Group Regularization (Proposed)

The group regularization that we propose is a variant of Group
Lasso. Its regularization term is defined as follows :

RP(W) = −λP

∑

g∈GP

log
(
p̃(‖wg‖2)

)
, (5)

where λP is the regularization parameter and p̃(x) is an arbi-
trary function taking a positive value.

In particular, in this study, we propose p̃(x) for node prun-
ing as follows :

p̃(x) = A1 exp

(
−Λ1

2
x2
)

+A2 exp

(
−Λ2

2
(x− µ)2

)
,

(6)

where µ,A1, A2,Λ1,Λ2 > 0 are parameters. This is based on
an idea similar to the spike and slab model for variable selec-
tion [16]. This definition corresponds to taking the truncated
mixture distribution of the two Gaussian distributions whose
means are 0 and µ as the prior distribution in Baysian estima-
tion. Λ1,Λ2 are the reciprocals of the variances of the Gaus-
sian distributions. A1, A2 correspond to the mixture ratio, but
they do not need to satisfy A1 + A2 = 1. For node pruning,
GP is defined as a set of all columns of weight matrix Wl for
l = 1, . . . , L− 1.

This paper uses “bimodal Group Ridge (bGR)” to refer to
the group regularization based on equation (6). These defini-
tions mean that the penalty will increase for groups whose group
parameter norms deviate from 0 or µ. When DNN learns the
minimization of the error function and RP simultaneously, the
norms of unnecessary groups approach zero, and the norms of
necessary groups approach µ. That is, w̌ are automatically di-
vided into two sets.

3.4. Node pruning procedure

We test the use of column vectors as groups. The algorithm for
node pruning is as follows :

Repeat the following steps from l = 1 to l = L− 1.
I Find the set S(l) of the column number such that the

norm of w̌ inW (l) is less than threshold value θ.
II For all i ∈ S(l), delete the ith column of W (l), the ith

row ofW (l−1) and the ith element of b(l−1).

4. Experiment
4.1. Data

The training data consisted of 1600 hours of Japanese utter-
ances recorded in various acoustic environments, and consisted
of real data of voice search application, call center recordings,
Corpus of Spontaneous Japanese (academic presentations) [17],
and Japanese Newspaper Article Sentences (reading newspa-
pers) [18]. The test data sets were composed to cover six tasks,
distant talk (1.5 and 2.5m), voice search task (Child, Elder and
Adult) and Reading speech, and each amounted to 2.5 hours in
total.
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Figure 2: Histogram of each column vector norm value in all weight matrices as the model parameters. The distributions towards the
left side are unneeded so the corresponding nodes can be pruned. The proposed bGRs method can safely prune DNN nodes than the
other approaches.

Table 1: CERs [%] of Japanese real recorded speech tasks (1600 hour-training data). We evaluate our proposal ”bGR” on six field
data sets: distant talk (1.5 and 2.5m), voice search task (Child, Elder and Adult) and Reading speech. Each column of θ indicates the
threshold for DNN node pruning decided by the distribution in group parameter space in Fig. 2. The nodes with values less than θ are
pruned.

Regularization
Evaluation data L2 Group Lasso bGR1 (µ = 8) bGR2 (µ = 7)

Not threshold θ Not threshold θ Not threshold θ Not threshold θ
pruned 0.1 2 pruned 0.1 2 pruned 0.1 2 pruned 0.1 2

distant talk (1.5m) 12.1 12.1 13.3 12.6 12.7 14.6 12.7 12.8 12.7 12.1 12.0 11.9
distant talk (2.5m) 16.2 16.2 18.0 16.4 16.2 18.8 16.8 16.9 16.7 15.8 15.8 15.7
voice search (Child) 10.9 10.9 11.0 11.1 11.1 11.0 11.5 11.5 11.5 10.9 10.9 10.9
voice search (Elder) 9.3 9.3 9.5 9.3 9.3 9.1 9.6 9.5 9.5 9.2 9.2 9.2
voice search (Adult) 13.6 13.6 13.2 13.6 13.5 13.7 14.0 14.0 14.1 13.3 13.3 13.4
Reading speech 3.2 3.2 4.4 3.1 3.1 2.9 3.4 3.3 3.0 2.6 2.6 2.7

4.2. System configuration

The input feature for all DNNs was 40 dimensional FBANK
with the temporal context of 11 frames; dynamic features (∆
and ∆∆) were used. The DNN architectures were six fully
connected layers with 2048 nodes and the number of the out-
put layer units was 3072; parameters were randomly initial-
ized and trained without pre-training. The 3-gram language
model was used in all conditions; it has 520K size vocabulary
and was trained on various text corpora with a total of 2.3G
words. Decoding was performed by the WFST-based decoder
VoiceRex [19, 20]. We evaluated performance in terms of char-
acter error rate (CER).

4.3. Parameter settings for each regularizer

We set the coefficient hyperparameter of each regularizer as fol-
lows; λL2 = λGL = λP = 2 · 10−7 and κGL = 2 · 10−8

(see in Section 3). These parameters were set by validation so
that the CER of Group Lasso equaled the CER without regular-
izations as much as possible. We evaluated the bGR method
using two values of µ ; “bGR1” is µ = 8, while “bGR2”
is µ = 7. The values of µ were set by validation. These
bGR use (Λ1,Λ2) = (30, 1) as the variances of distributions,
(A1, A2) = (1, 1) as the weight of distributions. The value of
Λ1 is set at an appropriate integer value such that the probability
that the group norm belonging to the distribution with mean 0
becomes less than 0.5 is more than 99%.

Threshold θ for pruning the model parameters was set at
either θ = 0.1or2. We can arbitrarily select θ to suit the group
parameter distribution in Fig. 2 as described later.

4.4. Result
Fig. 2 shows, for each approach, a histogram of the weight vec-
tor norms in the converged parameters. The horizontal axis
plots the norm value of the group (column vector) of the weight
matrix, and the vertical axis plots the appearance frequency.
Note that Fig. 2 is semilogarithmic, so the histogram of the pro-
posed method does not show the shape expected of a normal
distribution. The L2 regularization histogram, which does not
have a group whose norm value is close to zero, indicates that
groups considered unnecessary are densely distributed between
1 and 2. Group Lasso, bGR1 (µ = 8) and bGR2 (µ = 7) have
groups whose norm value is close to zero. Group Lasso has a
distribution of groups that are considered unnecessary widely
spread from 10−2 to 2. On the other hand, bGRs densely gath-
ered the groups considered to be unnecessary in the area with
norm values less than 10−1. However, there is also a small
norm group near 1 from 10−1. From these results, we set the
thresholds for pruning to θ = 0.1, 2.

Table 1 shows the CERs of each task before pruning and
after pruning, and Table 2 shows the pruning reduction rates.
Comparing the column of “Not pruned” for each method in Ta-
ble 1, bGR2 (µ = 7) yields better results than the other meth-
ods. The CERs before pruning take the order of bGR2 > L2 >
Group Lasso > bGR1. In addition, comparing the column of
after pruning with θ = 0.1 with the column of “Not pruned”
for each method in Table 1, we see that there is little difference
among the methods. It is considered that threshold θ was suf-
ficiently small and did not significantly affect the CERs after
pruning. Looking at the reduction rate with θ = 0.1 (Table 2),
L2 regularization has no reduction nodes at all. While Group
Lasso achieved only a 7.1% reduction rate, bGR1 (µ = 8) and
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Table 2: The total rate of pruned DNN nodes and that of reduced parameters. Each column of θ indicates the threshold for DNN
node pruning decided by the boundary of distribution in group parameter space in Fig. 2. Our proposed bGRs could reduce the model
parameters while keeping CERs (see in Table 1)

Regularization
Removal rate L2 Group Lasso bGR1 (µ = 8) bGR2 (µ = 7)

θ = 0.1 θ = 2 θ = 0.1 θ = 2 θ = 0.1 θ = 2 θ = 0.1 θ = 2

Group (DNN nodes) reduction rate 0% 8.3% 3.0% 10.8% 28.0% 30.3% 15.6% 18.2%
Parameter reduction rate 0% 19.4% 7.1% 25.1% 49.4% 52.1% 25.5% 28.9%

Table 3: The number of the pruned group vector norms corresponding to DNN nodes in each layer. Each column of θ indicates
the threshold for DNN node pruning decided by the boundary of distribution in group parameter space in Fig. 2. The bGRs could
prune more nodes than the other approaches, especially in middle hidden layers. The total node reduction ratio corresponds to group
reduction rate in Table 2.

Regularization
Layer l L2 Group Lasso bGR1 (µ = 8) bGR2 (µ = 7)

θ = 0.1 θ = 2 θ = 0.1 θ = 2 θ = 0.1 θ = 2 θ = 0.1 θ = 2

1 0 0 0 0 0 0 0 0
2 0 3 6 15 0 0 0 0
3 0 0 0 0 728 811 723 825
4 0 0 0 0 753 898 809 1,046
5 0 0 0 0 796 876 594 605
6 0 1,132 409 1,457 1,535 1,538 0 0

bGR2 (µ = 7) achieved 28.0% and 15.6%, respectively. Com-
paring the column of after pruning with θ = 2 with the column
of “Not pruned” for each method in Table 1, we see that the
CERs of L2 regularization and Group Lasso have deteriorated,
whereas the CERs of bGR1 (µ = 8), bGR2 (µ = 7) are almost
unchanged. The CERs after pruning with θ = 2 is take the order
of bGR2> bGR1> L2, Group Lasso. Looking at the reduction
rate with θ = 2 in Table 2, L2 regularization and Group Lasso
have greatly increased reduction rate compared with θ = 0.1.
On the other hand, while the reduction rates of bGR1 (µ = 8)
and bGR2 (µ = 7) have increased, the change is not large.
However, the reduction rates of bGRs are very high compared
with the results of L2 regularization and Group Lasso. The dif-
ference in parameter reduction rate between Group Lasso and
bGR1 (µ = 8) is 27.0%, the difference between Group Lasso
and bGR2 (µ = 7) is 3.8%.

Table 1 also shows the results wherein the CER increases
after pruning in all methods. This is because the retention of
an originally useless node yields an adverse effect like noise,
so performance is expected to be improved by deleting useless
nodes.

Table 3 shows the number of groups deleted in each layer.
Looking at Table 3, while L2 regularization and Group Lasso
achieve great reduction in only the last layer, bGR1 (µ = 8) and
bGR2 (µ = 7) can achieve reductions in 4 layers and 3 layers
respectively. Group Lasso is a regularization method similar to
L2 regularization and so simply makes the parameters smaller;
it does not change the structure of the parameter distribution
of the original DNN. On the other hand, it can be seen that
the proposed method completely changes the structure of the
distribution, it can identify unnecessary parameters that remain
hidden from simple reduction. In L2 regularization and Group
Lasso, groups whose norm values are less than 2 are concen-
trated in the last layer after learning; deleting them all at once
had a significant impact on the CER. On the other hand, bGRs

was not significantly influenced by their deletion because the
groups whose norm values is less than 2 were dispersed among
the other layers. There are also extreme differences between
bGR1 (µ = 8) and bGR2 (µ = 7) such as deleting the last layer
or not. This implies that bGR1 (µ = 8) considered the groups
in the last layer unnecessary, which normally have a small norm
value without regularization, whereas bGR2 (µ = 7) consid-
ered them necessary.

The proposed method can achieve a large reduction rate like
bGR1 (µ = 8), and it was confirmed that the CER and reduc-
tion amount can be adjusted by altering µ. In addition, while we
performed experiments with(A1, A2) fixed this time, it is con-
sidered that the reduction rate can be freely changed to some ex-
tent by adjusting these values which corresponds to the mixing
proportion of prior probabilities. Furthermore, it can be thought
that unnecessary parameters can be brought closer to 0 by using
the Laplace distribution with mean 0 instead of the Gaussian
distribution.

5. Conclusion
We have proposed a constrained DNN training method that
uses a group regularizer for pruning model parameters. The
proposal, bimodal Group Ridge (bGR), is based on a mixture
distribution-based regularizer which assumes distributions of
norms in the group parameter space; it has hyperparameters
such as the mixture weight, mean and variance. bGR regular-
izes the group parameters by the assumed distribution so that
classification of needed or unneeded group members becomes
possible. We showed the effectiveness of the proposal in vari-
ous Japanese speech recognition tasks; it achieved a higher rate
of model parameter reduction than existing regularizers while
keeping recognition performance high, the reduction rate was
52%. Future work includes tuning the hyperparameters and ap-
plication of the proposal to convolutional neural networks and
recurrent neural networks with long short-term memory.
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