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Abstract

Music genre recognition is a very interesting area of research in
the broad scope of music information retrieval and audio signal
processing. In this work we propose a novel approach for mu-
sic genre recognition using an ensemble of convolutional long
short term memory based neural networks (CNN LSTM) and a
transfer learning model. The neural network models are trained
on a diverse set of spectral and rhythmic features whereas the
transfer learning model was originally trained on the task of mu-
sic tagging. We compare our system with a number of recently
published works and show that our model outperforms them and
achieves new state of the art results.

Index Terms: music genre recognition, music information re-
trieval, deep learning, transfer learning

1. Introduction and Related Work

Music information retrieval (MIR) is an interdisciplinary field
dealing with the analysis of musical content by combining as-
pects from signal processing, machine learning and music the-
ory. MIR enables computer algorithms to understand and pro-
cess musical data in an intelligent way. Music genre recognition
(MGR) is one of the most important subfields of MIR. Music
genre is defined as an expressive music style incorporating in-
strumental or vocal tones in a structured manner belonging to a
set of conventions. Automatic music genre recognition is a very
interesting problem in the context of MIR because it enables
systems to perform content based music recommendation, or-
ganizing musical databases and discovering media collections.

The first significant work on musical genre recognition
were performed in [1] by Tzanetakis and Cook. Timbral tex-
ture, thythmic content & pitch content based features were
proposed and classification was done using Gaussian mixture
model (GMM) and K-nearest neighbor (K-NN) algorithms.
Musical genre recognition using support vector machines were
proposed in [2] by Xu et al. In [3] Costa et al. proposed the
approach of musical genre recognition using spectrogram fea-
tures. In [4, 5] specific musical features were used with feature
selection techniques. Musical genre classification using deep
learning models has been performed in [6, 7, 8]. Survey works
performed in [9, 10] gives a comprehensive account of genre
classification of musical content and evaluation techniques. Au-
thors in [11] introduced the Million Song Dataset - a collection
of audio features and metadata for a million contemporary pop-
ular music tracks. A wide range of musical information retrieval
systems can be build using this dataset including genre recogni-
tion, automatic music tagging, music recommendation, etc [1].

2. Proposed Methodology

In this work we have focused on genre recognition of the songs
in the GTZAN dataset [1], which has been widely studied in the
area of MGR. The dataset contains songs of ten different gen-
res - blues, classical, country, disco, hip-hop, jazz, metal, pop,
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reggae & rock. To recognize the genre of a song, we first train
our deep neural network models on a set of extracted spectral
and rhythmic features. We also utilize a transfer learning sys-
tem to extract meaningful features from the songs. A multilayer
perceptron network is then trained on this transferred features
to predict the genres. Finally the predictions of different models
are combined using a majority voting ensemble.

2.1. Feature Extraction
2.1.1. Two Dimensional Spectral and Rhythmic Features:

A diverse set of spectral and rhythmic domain features are
first extracted from the raw musical wav signals. In the
features listed below, ‘Tonnetz’ and ‘Tempogram’ are rhythmic
features, the rest are spectral features. The musical data in
the GTZAN dataset are sampled at 22050 Hz and are around
30 seconds long resulting in a total of roughly 22020 x 30
= 661500 samples. We compute the features for each sliding
window of 2048 samples with shift of 1024 samples. We pad
appropriate number of zeros at the end such that there are a
total of 661500/1024 = 646 windows and thus each song is
represented as a (646, k) dimensional feature matrix. The exact
choice of k depends on the feature being computed.

o Mel Spectrogram: Mel-frequency cepstrum (MFC) represen-
tations introduced in [12] are widely used in automatic speaker
and speech recognition. The mel spectrogram produces a time-
frequency representation of a sound imitating the biological au-
ditory systems of human beings. We compute the magnitude
spectrum from the time series musical data and then map it on
to the mel scale. We used k = 128.

o Mel Cepstral, Delta and Double Delta Coefficients: Mel
cepstral coefficients (MFCCs) are the coefficients that collec-
tively make up a mel-frequency cepstrum. We used k = 20 mel
cepstral coefficients.

e Delta Coefficients: We used k = 20 delta coefficients (deriva-
tive of the mel cepstral coefficients).

o Double Delta Coefficients: We used k = 20 double delta co-
efficients (double derivative of the mel cepstral coefficients).

e Energy Normalized Chromagram: Chroma audio features
are extensively used in musical signal processing. Chroma fea-
tures are effective in audio matching and retrieval applications
[13, 14] as they capture melodic and harmonic characteristics of
music and are robust to changes in instrumentation and timbre.
In [15] authors introduced Chroma Energy Normalized Statis-
tics (CENS) features by considering short time statistics over
energy distributions within the chroma bands. We took k = 12
as it represents 12 distinct semitones of the musical octave.

e Constant Q Chromagram: Constant Q transform [16] con-
stitutes of a bank of filters with logarithmically spaced center
frequencies f, = fo X 2% where n = 0,1, ..; central fre-
quency of the lowest filter is denoted by f, and the number of
filters in each octave is denoted by b. An appropriate choice of
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Figure 1: Distinctive spectral and rhythmic features of two songs belonging to the ’Classical’ and "Jazz’ genre. Mel Spectrogram and
Constant Q Chroma are spectral domain features, whereas Tonnetz and Tempogram are rhythm domain features. Similar phenomenon

is observed for the rest of the features across all the genres.

fo and b directly corresponds to musical notes. This transform
also has increasing time resolution towards higher frequencies
resembling the human auditory system. k = 12 was taken.

e Short Time Fourier Transform (STFT) Chromagram:
Chromagram of short-time chroma frames are used with k =
12.

e Tonnetz: Tonal centroid features (tonnetz) are computed fol-
lowing works in [17]. Authors show that this features are suc-
cessful in detecting changes in the harmonic content of musi-
cal audio signals, such as chord boundaries in polyphonic audio
recordings. We used k = 6 tonnetz features.

e Tempogram: The aspects of tempo and rhythm are very im-
portant dimensions of music. In [18], the authors introduced a
robust mid-level representation that encodes local tempo infor-
mation by computing local autocorrelation of the onset strength
envelope in music signals. This tempogram feature can act as
a very important source of information for MGR, specifically
where music reveals significant tempo variations. We used k =
128 tempogram features.

2.1.2. One Dimensional Averaged and Transfer Learning Fea-
tures

We also compute the following one dimensional vectors as a
summary statistic of the whole song.

o Averaged Signal Vector: This vector is calculated simply
by taking the average of all the extracted two dimensional fea-
tures listed above. After extracting (646, k1) dim matrix from
mel spectrogram, (646, k2) dim matrix from mel cepstral co-
efficients, ..., (646, k,,) features from tempogram, the averag-
ing was performed over these 646 windows. Finally vectors of
k1, k2, ..., k. dimensions were obtained which were then con-
catenated to obtain the averaged signal vector. Our particular
choices of ki, ..., kn led to this vector having dimension of 342.
e Music Transfer Learning Vector: Transfer learning is fre-
quently used in computer vision problems. In this kind of sys-
tems, generally a deep convolutional net trained on the large
scale ImageNet data [19] is used. Although the original net-
work is trained on ImageNet data, it is able to capture a wide
variety of visual features which are then used for other recog-
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nition tasks. In [7] authors introduce a musical transfer learning
system. A deep convolutional neural network is first trained on
a large dataset [11] for music tagging. The tags include genre,
era, instrumentation, and mood labels. This trained network is
then used as a feature extractor for other related tasks. We use
the model to extract a 160 dimensional vector for each song.

2.2. Models

Convolutional neural networks (CNN) are specially designed
neural networks for processing data that has a grid-like topol-
ogy [20]. Introduced in [21] convolutional neural networks have
produced excellent results in a wide variety of problems includ-
ing computer vision [22, 23, 24], speech recognition [25] and
natural language processing [26, 27]. Long short term memory
(LSTM) networks [28] are also widely used in sequential time
series data to capture long term dependencies.

In this work, we apply variants of CNN and CNN-LSTM
models for musical genre prediction. Following [26] we use 1D
convolution in our models. Here, the extracted features have di-
mensions of (646, k) (Section 2.1), and our convolutional filters
have dimension of (3, k). The 1D convolution operation is per-
formed by sliding the filters over the 646 windowed time-steps.
The operation is denoted as 1D convolution because the con-
volutional filters and the features have same length and hence
the sliding of the filters are performed only over the width (time
dimension) of the features.

In total, we apply four different CNN and CNN-LSTM
models on all the extracted two dimensional features separately
to predict the genre of the song. Structure of these models are
outlined in Fig. 2. For the two different kinds of one dimen-
sional vectors we use two separate multilayer perceptron (MLP)
models for genre prediction. We briefly describe configurations
of these models below.

o CNN Max Pooling Model: A two layer deep CNN model is
used with 128 and 64 filters (width 3) respectively in the two
layers. Between these two layers max pooling is performed with
factor two. After the second convolution layer, global max pool-
ing is used to create a representational vector. This vector is then
used in a fully connected layer to create the output genre.

e CNN Max Pooling LSTM Model: This model is similar to
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Figure 2: a) CNN Max Pooling and b) CNN Max Pooling LSTM models for mel spectrogram features. For CNN Average Pooling and
CNN Average Pooling LSTM models, the max pooling and global max pooling functions are replaced with average pooling and global
average pooling functions respectively. We use the same model configuration for all the other extracted features.

CNN Max Pooling Model with the exception of a LSTM layer
being used after the second convolutional layer instead of global
max pooling. The final hidden state of the LSTM network is
used in the fully connected layer for genre prediction.

o CNN Average Pooling Model: The max and global max pool-
ing functions in the CNN Max Pooling Model are replaced with
average and global average pooling.

o CNN Average Pooling LSTM Model: The max pooling be-
tween the convolutional layers in the CNN Max Pooling LSTM
Model is replaced with average pooling.

e Multilayer Perceptron (MLP) Model: The input to this net-
work is a one-dimensional feature vector. A single hidden layer
with 256 nodes is used. The output layer has 10 nodes corre-
sponding to 10 different genres.

For all the models we use ReLLU [29] activation in the hidden
layers and softmax activation in the output layer. The models are
trained with Adam [30] optimizer. 25% dropout [31] is applied
in the fully connected layers for regularization.

3. Experiments, Results and Discussion

The GTZAN dataset consists of 1000 audio tracks each being
30 seconds long. All the tracks are 22050Hz mono 16-bit audio
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files in .wav format. It contains 10 genres of songs - blues, clas-
sical, country, disco, hip-hop, jazz, metal, pop, reggae & rock.
Each genre is represented by 100 tracks. We evaluate our mod-
els in this ten class classification framework. We run our ex-
periments in a 10 fold cross validation setup. We maintain the
uniform distribution of musical genres in each fold i.e. there are
80 songs of each genre in the train split and 20 songs of each
genre in the validation split for each fold.

The average 10 fold accuracy score of our models are re-
ported in Table. 1. A number of interesting observations can be
made from the results. First of all, we observe that the best result
is obtained by the multilayer perceptron model when used with
music transfer learning features. This result can be expected as
the original system was trained on the very large Million Song
Dataset [11] containing rich label sets for various aspects of mu-
sic including mood, era, instrumentations and most importantly
genre. Also further fine-tuning was performed on our experi-
mental setup leading it to produce the best results. We also ob-
serve that the mel spectrogram features produces best results in
CNN Max Pooling and CNN Average Pooling models, whereas
mel coefficients produces best results for CNN Max Pooling
LSTM and CNN Average Pooling LSTM models.

The introduction of LSTM resulted in improved perfor-



CNN Max .

Featares & Modes s | ey | O e | O e | i
LSTM

Mel Spectrogram 83.0 73.6 82.5 75.7 -
Mel Coefficients 80.2 79.0 81.6 80.5 -
Delta Mel Coefficients 70.4 77.2 74.5 71.0 -
Double Delta Mel Coefficients 72.1 72.9 72.1 76.5 -
Energy Normalized Chromagram 45.7 345 43.0 36.2 -
Constant Q Chromagram 60.0 494 57.5 45.6 -
STFT Chromagram 62.8 52.5 63.4 53.7 -
Tonnetz Features 50.2 535 51.0 55.8 -
Tempogram Features 41.5 42.0 41.6 43.3 -
Averaged Signal Features - - - - 77.1
Transfer Learning Features - - - - 85.5

Table 1: Average 10 fold cross validation accuracy scores for different features and models.

mance for delta coefficients, double delta coefficients, tonnetz
features and tempogram features. The performance of max
pooling and average pooling is somewhat consistent across all
the feature sets. In some cases max pooling performs better,
whereas in other cases average pooling performs better.

This heterogeneous and complementary characteristics of
the models led us to build an ensemble model which effectively
improves the performance by combining the outputs of all the
base systems. Our ensemble model is a simple majority vot-
ing ensemble of all the deep learning and multilayer perceptron
models; e.g. for a particular song, a number of genre predictions
will be available from the base models. The genre which is pre-
dicted with most frequency will be the final assigned genre. If
multiple genres are predicted with highest frequencies then the
final decision is made based on the predicted softmax probabil-
ities. By incorporating this simple rule, we were able to get a
large improvement in performance as reported in Table 2.

4. Comparative Analysis

Table 2 also shows results of our proposed model compared
to other state-of-the-art systems. Grzegorz and Grzywczak [6]
reported an accuracy of 78.0%. They extracted features from
spectrograms using a deep convolutional network trained for
image classification and finally used a SVM for genre predic-
tion. Baniya et al. [32] reported scores of 87.9% using rich
statistics and low-level music features. In [7] authors used a
transfer learning system trained for music tagging to extract
features for genre prediction. They reported scores of 89.8%
by taking features from multiple layers of the transfer CNN
model. Arabi and Lu [33] reported an accuracy of 90.79 % us-
ing a SVM classifier over selected combination of high and low
level musical features. In [4] Panagakis et al. used rich, psycho-
physiologically inspired properties of temporal modulations of
music with a sparse representation based classifier to achieve
accuracy score of 91.0 %. Mostly pitch, temporal and timbre
features were used with non negative matrix factorization as a
feature reduction technique. Works by the same authors in [5]
further increases the score to 93.7% by the utilization of topol-
ogy preserving non-negative tensor factorization.

Our ensemble system of CNN Average Pooling and MLP
models achieves an accuracy score of 94.2 %, which is at least
0.5% more than the rest of the comparative systems. One im-
portant aspect to note here is the work by Sturm B. L. in [34].
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Models Accuracy Score
Ensemble Models

CNN Max Pooling & MLP 93.6

CNN Max Pooling LSTM & MLP 91.5

CNN Average Pooling & MLP 94.2

CNN Average Pooling LSTM & MLP 91.4

Comparison with state-of-the-art systems

Grzegorz and Grzywczak [6] 78.0
Baniya et al. [32] 87.9
Choi et al. [7] 89.8
Arabi and Lu [33] 90.8
Panagakis et al. [4] 91.0
Panagakis et al. [5] 93.7
Proposed System 94.2

Table 2: Ensemble models and comparative results with other
state-of-the-art systems.

With rigorous examples and case studies, it is demonstrated that
the perfect system in the GTZAN dataset would not be able to
surpass the accuracy score of 94.5% due to the inherent noise in
the some of the repetitions, mis-labelings and distortions of the
songs. Interestingly, our proposed system achieves accuracy of
94.2%, an almost perfect score.

5. Conclusion

In this work we proposed a novel approach for music genre
recognition. Firstly variants of CNN and CNN-LSTM based
models are trained on a variety of spectral and rhythmic fea-
tures. Secondly, a MLP network is trained on extracted repre-
sentational features from a transfer learning system trained for
music tagging. Finally, these models are combined in a majority
voting ensemble setup. With our experiments we showed that
the ensemble model is effective in greatly improving the per-
formance. Our proposed model outperforms the current state-
of-the-art systems and achieves a near perfect score for musical
genre recognition in the GTZAN dataset.
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