
VoiceGuard: Secure and Private Speech Processing

Ferdinand Brasser1, Tommaso Frassetto1, Korbinian Riedhammer2, Ahmad-Reza Sadeghi1,
Thomas Schneider1, Christian Weinert1

1Technische Universität Darmstadt, Germany
2University of Applied Sciences Rosenheim, Germany

{ferdinand.brasser, tommaso.frassetto, ahmad.sadeghi}@trust.tu-darmstadt.de,
korbinian@ieee.org, thomas.schneider@cs.tu-darmstadt.de, christian.weinert@crisp-da.de

Abstract
With the advent of smart-home devices providing voice-based
interfaces, such as Amazon Alexa or Apple Siri, voice data is
constantly transferred to cloud services for automated speech
recognition or speaker verification.

While this development enables intriguing new applications,
it also poses significant risks: Voice data is highly sensitive since
it contains biometric information of the speaker as well as the
spoken words. This data may be abused if not protected properly,
thus the security and privacy of billions of end-users is at stake.

We tackle this challenge by proposing an architecture,
dubbed VoiceGuard, that efficiently protects the speech pro-
cessing task inside a trusted execution environment (TEE). Our
solution preserves the privacy of users while at the same time it
does not require the service provider to reveal model parameters.
Our architecture can be extended to enable user-specific models,
such as feature transformations (including fMLLR), i-vectors,
or model transformations (e.g., custom output layers). It also
generalizes to secure on-premise solutions, allowing vendors to
securely ship their models to customers.

We provide a proof-of-concept implementation and evaluate
it on the Resource Management and WSJ speech recognition
tasks isolated with Intel SGX, a widely available TEE implemen-
tation, demonstrating even real time processing capabilities.
Index Terms: speech recognition, privacy protection, cloud
computing

1. Introduction
Devices providing voice-based interfaces are omnipresent in
today’s world. Amazon Alexa, Apple Siri, Google Assistant,
or Microsoft Cortana are available to the more than two billion
smartphone users in 2018. Also, there is a steadily increasing
number of smart-home devices, like Amazon Echo, Apple Home-
Pod, or Google Home, solely relying on voice-based interaction.
Possible application scenarios are not restricted to the consumer
market but increasingly cover professional activities, for example
enterprise-ready smart assistants guiding through complicated
business processes in order to increase productivity.

In any of the aforementioned cases, voice data is constantly
transferred to the cloud for remote speech processing, such as au-
tomated speech recognition (ASR) or speaker verification. This
poses significant security and privacy risks since voice data con-
tains sensitive biometric information as well as the spoken words:
in case unprotected voice data gets out of hand, it may be abused,
e.g., for impersonation attacks, assembling fake recordings, or
simply extracting intimate as well as secret and sensitive content.

A naive solution to these problems is to ship the speech
processing code together with corresponding models to the users
to run locally. While this might be infeasible for low-end devices

anyhow, it also contradicts the business interests of vendors pro-
viding such models which represent their intellectual property.

Attempts based on purely cryptographic solutions, i.e., ho-
momorphic encryption (HE) or secure multi-party computation
(SMPC), guarantee that neither user nor vendor need to reveal
their respective inputs in the clear. However, as we elaborate in
our review of related work in §2, these solutions are highly im-
practical due to their massive overhead in computation time and
communication costs. Besides, none of the existing solutions
considered user-specific models, i.e., the common practice to
train or adapt a separate model for each user that covers devia-
tions from the model to incorporate specific characteristics, e.g.,
in dialect and pronunciation.

Goals and Contributions. To overcome these limitations,
we propose VoiceGuard in §5, an architecture that efficiently
protects speech processing tasks using a trusted execution envi-
ronment (TEE). It allows the secure processing of confidential
data even in a hostile environment by combining cryptographic
techniques with hardware-enforced code and data isolation.

Although the concept of TEEs has been known for many
years, they only recently became widely available with Intel’s in-
troduction of Software Guard Extensions (SGX). SGX is Intel’s
implementation of a TEE available in most of their recent CPUs.
It generated large interest in both academic research and indus-
try: Signal, for example, a popular instant messaging service
similar to WhatsApp, employs Intel SGX to identify the contacts
in a new user’s address book that are signed up to the service
while all other contacts remain private [1]. The deployment of
such privacy-preserving services is also facilitated by leading
cloud service providers (e.g., Microsoft Azure [2]) making this
CPU feature available to customers.

VoiceGuard enables secure and private speech processing,
independent of who actually controls the machine performing
the computation. Thus, it could be hosted by the vendor of the
speech processing software, a third party service provider, or
even the user. The latter on-premise solution could be preferred
if it is necessary to comply to certain legal regulations or the user
wants to exclude the possibility of a malicious party performing
sophisticated hardware attacks.

The architecture of VoiceGuard can easily be extended to
enable user-specific models, such as feature transformations (in-
cluding fMLLR), i-vectors, or model transformations (e.g., cus-
tom output layers). We present a fully functional prototype imple-
mentation of VoiceGuard for ASR based on the kaldi toolkit [3].
Moreover, we conduct an empirical performance evaluation of
the Resource Management and WSJ speech recognition tasks
in §6, thereby demonstrating that the overhead induced by our
protection measures is low enough to enable privacy-preserving
speech recognition in real time.

Interspeech 2018
2-6 September 2018, Hyderabad

1303 10.21437/Interspeech.2018-2032

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/2032.html


2. Related Work
In the following, we briefly review general approaches for
privacy-preserving machine learning (grouped by the underlying
technology) that could be adapted to speech processing tasks
which depend on the evaluation of neural networks. Furthermore,
we review specialized approaches for various privacy-preserving
speech processing tasks.

2.1. Privacy-Preserving Machine Learning

Secure Multi-Party Computation (SMPC). SMPC en-
ables two or more parties to jointly compute a publicly known
function without revealing private inputs to each other by exe-
cuting an interactive cryptographic protocol. Recently, SMPC
protocols and frameworks have been applied to both privacy-
preserving training of neural networks [4] and corresponding in-
ference [5, 6, 7, 8, 9], mostly for image classification tasks. How-
ever, compared to unprotected data processing, SMPC-based so-
lutions require several orders of magnitude higher computation
time and communication cost. They are especially impractical
for on-the-fly processing due to repeated initialization costs.

Homomorphic Encryption (HE). HE allows performing
operations on encrypted data s.t. the decryption of the com-
putation result equals the outcome when performing the same
operations on plaintext data. Microsoft CryptoNets [10] was
the first attempt to utilize HE for secure evaluation of neural
networks, followed by an improvement named CryptoDL [11],
which replaces complex activation functions with approximated
low-degree polynomials. Nevertheless, the reported performance
results indicate that solutions based on heavyweight HE are cur-
rently far from suitable for speech recognition in real time.

TEE. SMPC via TEEs has been proposed in [12, 13, 14].
Ohrimenko et al. [15] adapt several machine learning algorithms,
including neural networks, to prevent cache-based side-channel
attacks in scenarios where multiple institutions use Intel SGX
to securely share their datasets for training and evaluation of
joint machine learning models. In [16], the authors introduce a
similar protection mechanism that is efficient enough for real-
time data processing: instead of preventing memory accesses
that depend on sensitive data, they add noise to memory traces
by accessing dummy data. The very recent Chiron [17] system
allows a user to train a model using the computing resources of
a cloud service provider while the training data remains hidden
and the resulting model can only be accessed as a black box. This
machine learning as-a-service (MLaaS) concept differs from our
scenario where we assume vendors who provide existing models
which should only be evaluated obliviously.

2.2. Privacy-Preserving Speech Processing

Pathak et al. [18] explored how to use the previously mentioned
SC and HE techniques for privacy-preserving versions of speech
processing tasks such as speech recognition and speaker verifi-
cation. However, with their prototype implementation based on
the Paillier HE scheme, it takes more than 3 hours to encrypt
1 s of audio and to recognize a single word out of a 10 word
vocabulary. Admitting the impracticality of this approach, the
authors furthermore propose a very efficient solution based on
secure string-matching. Unfortunately, this approach can only
be used for certain tasks such as speaker verification.

Recently, Glackin et al. [19] proposed an architecture for
finding outsourced (encrypted) speech documents that contain
given keywords. The architecture works as follows: (I) the
client translates audio to phonetic symbols using a CNN-based

acoustic model, (II) the encrypted phones and a search index are
sent to a server, and (III) the server uses a searchable encryption
scheme to deliver outsourced data matching the given keywords.
However, this approach requires the vendor to hand the acoustic
model to the user in the clear.

3. Background
For the remainder of the paper, we assume familiarity with
state-of-the-art speech processing pipelines and restrict the back-
ground to the introduction of Intel SGX.

Intel SGX. Intel Software Guard Extensions (SGX) enables
processing of confidential data on untrusted systems [20, 21,
22, 23]. SGX introduces the concept of enclaves, which are
programs executed in isolation from all other software on a
system, including privileged software, like the operating system
(OS) or a hypervisor.

Enclaves are loaded as part of a host process and are embed-
ded in its virtual memory, like a library. The initial content of
an enclave is loaded from unprotected memory, hence, it can be
manipulated and is not kept confidential. Therefore, confidential
data must be provisioned to an enclave over a secure channel
after it has been created. However, to ensure that secret data is
not sent to a malicious (or maliciously modified) enclave, the in-
tegrity and authenticity of an enclave needs to be verified before
provisioning secret data. To enable this, SGX provides a security
service called remote attestation (RA). With RA, an external
party can verify whether an enclave was created correctly, i.e., a
cryptographic hash of the initial memory state of an enclave is
signed by the platform signing key which is built into the CPU.

Once available inside an enclave, secret data can be en-
crypted using an enclave-specific key and written to untrusted
storage, e.g., the hard disk. This sealing mechanism allows an
enclave to use secret data across multiple instantiations.

4. Model and Assumptions
In this paper we consider a setting where three parties collaborate
to perform secure and private speech processing:

(1) The user provides the voice data to be processed. She is
concerned about her privacy and does not want the other parties
to identify her based on biometric characteristics in her input.
Additionally, the user does not want to reveal the content of her
input to the other parties, i.e., they should not be able to access
the voice data or the processing results. Lastly, the user does not
want to be traceable across multiple sessions.

(2) The vendor provides the software required for speech
processing together with corresponding models. This data con-
stitutes the vendor’s intellectual property, hence it must be kept
confidential from the other parties.

(3) The service provider carries out the actual computations
based on the user’s and the vendor’s inputs. The service provider
could be an independent third party, e.g., a cloud service provider.
Without loss of generality, the service provider could also be
under the control of the user or the vendor.

Adversary Model. The adversary’s goal is to extract sensi-
tive information, i.e., the intellectual property of the vendor, the
input of the user, or data that allows the adversary to identify or
track the user.

We assume that the adversary is in control of the service
provider’s infrastructure, in particular, all computer systems
involved in performing the speech processing task. The adver-
sary has full control over the software in the service provider’s
infrastructure, including privileged software like the OS or a

1304



Encl. init.

Encl.
Code

2 code vetting

3 create

User U Vendor V

SGX Enclave

𝑷𝑲

Service Provider P

6 𝐸𝐾𝑈(𝑖𝑛𝑝𝑢𝑡)

AM

𝜃

𝜃

LM

1 provision

𝑲𝑽𝑲𝑼

𝑲𝑽𝑲𝑼

4 attest 𝜎(𝑀, 𝑃𝐾)

5 send 𝐸𝑃𝐾(𝐾𝑈)

SR-Engine

4 attest 𝜎(𝑀, 𝑃𝐾)

5 send 𝐸𝑃𝐾(𝐾𝑉)

I.
 P

re
p

ar
at

io
n

II
. I

n
it

ia
liz

at
io

n
II

I.
 O

p
er

at
io

n

7 𝐸𝐾𝑈(𝑜𝑢𝑡𝑝𝑢𝑡)

Figure 1: VoiceGuard architecture. User U establishes a secure
channel with the SGX enclave hosted at service provider P and
sends sensitive voice data as well as user-specific adaptation
data θ. Similarly, vendor V sends the sensitive models AM and
LM through a secure channel. P securely processes U’s voice
data using V’s models within an SGX Enclave.

hypervisor. We assume that the adversary cannot perform in-
vasive hardware attacks like extracting keys from the CPU.
We also consider physical side-channel attacks, like differen-
tial power analysis [24], out of scope. We assume the enclave
developer incorporated appropriate defense mechanism to pro-
tect against side-channel attacks leveraging micro-architectural
effects [25, 26, 27].1

5. VoiceGuard Design
Our architecture VoiceGuard enables privacy-preserving and
efficient speech processing on untrusted systems. VoiceGuard
supports different deployment scenarios, i.e., the service provider
is not necessarily a third party, but could also be the user or the
vendor. Common to all scenarios is the basic setup, i.e., at least
two input parties provide sensitive data while the computing
platform is not trusted by at least one of them.

For the sake of simplicity we explain our solution based
on the speech recognition scenario visualized in Fig. 1, where
the service provider P is an untrusted third party, e.g., a cloud
service provider. The vendor V’s private input consists of speech
recognition models. The user U’s private input is the voice data.
In this example, the output is sensitive as well and should only
be made available to the user.2

VoiceGuard works in three phases: (I) preparation, (II) ini-
tialization, and (III) operation. In the first phase, user U and
vendor V need to agree on the code to be executed in the enclave
(“Encl. Code” in Fig. 1). In the second phase, the enclave code
is instantiated. U and V use remote attestation (RA) to establish
secure channels with the enclave through which they provision
their respective encryption keys to the enclave. In the third phase,
the enclave is ready to perform speech processing. Using the
keys transmitted in the previous phase, U and V provide their
respective inputs to the enclave in encrypted form. The result of
the operation phase is encrypted with the user’s key, so only she

1Our evaluation is performed without such protection mechanisms
and thus does not reflect their impact on the performance results.

2The output could also be provided to one or multiple other parties.

can decrypt it. Next, we describe the individual phases in detail:
Preparation Phase. First, U and V need to agree on the

code to be run inside the SGX enclave. While SGX protects
enclaves against accesses from the outside, they are nevertheless
allowed to output data without any restriction. Therefore, U and
V want to make sure that the enclave code only outputs non-
sensitive data. The code typically comes from the vendor, i.e.,
V provisions the enclave code, 1 in Fig. 1. Thus, V can easily
ensure that no sensitive data will leave the enclave. The code
itself is not necessarily confidential and is often open source.
However, U has to carefully analyze the enclave code in a vetting
process 2 to verify that it does not contain functions which
will leak her sensitive data. The vetting process could also be
outsourced to a trusted third party, e.g., a government institution.

Additionally, the vendor provisions its acoustic model AM
and language model LM to the service provider. Both are en-
crypted with the vendor’s key KV s.t. the service provider can-
not access the vendor’s intellectual property. At this stage, the
models are not yet loaded inside an enclave, but are written to
untrusted storage, e.g., the hard disk.

Initialization Phase. The enclave is created from the code
provisioned by V earlier 3 . The creation process is measured by
the SGX-enabled CPU, i.e., a cryptographic hash of the initial
memory content of the enclave is created and stored securely. If
the enclave code is manipulated before or during the creation
process, the measurement will produce a different result and the
manipulation is detected. After the creation is finished, the code
is isolated from all accesses and cannot be changed anymore.

The first operation performed by the enclave is the enclave
initialization, during which the enclave generates a key pair for
asymmetric cryptography operations like RSA [28],3 with the
public key PK shown in white in Fig. 1.

Next, U and V need to establish a secure channel with the
enclave by provisioning their keys KU and KV , respectively, to
the enclave. We will describe this process for U. The process
for V is identical. VoiceGuard uses public key cryptography
similar to Transport Layer Security (TLS) [29], which is widely
used to secure web sites. The enclave sends its public key PK
to U. However, U needs assurance that the received PK comes
indeed from the correct enclave, i.e., the authenticity of PK must
be established. This is done using the remote attestation (RA)
feature of SGX, which generates a digital signature σ(M,PK )
that binds PK to the measurementM of the enclave, 4 in Fig. 1.
In particular, the public key PK , which was generated inside
the enclave, and the measurement of the initial enclave memory
content are signed with the platform key. This signature can be
verified using Intel’s public key infrastructure (PKI) for SGX.

The user verifies the signature and checks that M matches
her expectations, i.e., that the enclave has not been altered before
or during creation. If both checks were successful, the user can
be sure that PK belongs to the key pair generated by the correct
enclave and that information encrypted with PK can only be
decrypted inside that enclave. In step 5 , U encrypts her keyKU

with PK and sends the result EPK (KU ) to the enclave.
At the end of the initialization, the enclave shares a symmet-

ric key with the user (KU , the gray key in Fig. 1) and with the
vendor (KV , the black key in Fig. 1).

Operation Phase. The user sends encrypted inputs
EKU (input), i.e., audio samples, to the service provider. Since
the input is encrypted with U’s key, it can only be accessed by
the enclave 6 . If applicable, U also sends her user-specific adap-

3This process leverages the hardware random number generator of
the CPU and can therefore not be influenced from outside the enclave.

1305



tation parameters θ (e.g., i-vectors), which are also encrypted
with KU , to the enclave.

Inside the enclave, U’s input is decrypted and passed to
the speech recognition engine (“SR-Engine” in Fig. 1). The
SR-Engine has two additional inputs, the acoustic model AM ,
typically a deep neural network (DNN), and the language model
LM , typically a decoding graph. AM is provided by V and
already stored encrypted at P. When AM is used, it is loaded
into the enclave and decrypted using V’s key KV . Similarly, any
adaptation parameters θ and the language model LM are loaded
by the enclave, decrypted, and passed to the SR-Engine.

On-demand loading of AM or LM could leak sensitive
information about their structure by observing access patterns.
This can be prevented by storing this data in a randomized order,
i.e., preventing an observer from learning useful information
from observed access patterns [30].

The result of the speech processing is encrypted with KU

and sent back to the user 7 .4 Additionally, the SR-Engine
may produce updated adaptation parameters θ, which are then
encrypted with KU and sent back to U.5

Once in the operation phase, the system can be queried
repetitively by the user, thereby avoiding repeated preparation
and initialization costs.

6. Evaluation
To show the effectiveness of VoiceGuard, we created a proof-
of-concept implementation which embeds kaldi [3] in an SGX
enclave using the Graphene library OS [31]. We ran experiments
on two representative corpora: DARPA Resource Management
(RM) [32] and Wall Street Journal (WSJ) [33]. Note that the
purpose of these experiments is not to show improvements for
certain training algorithms, but rather to prove that both regu-
lar and VoiceGuard decoding yield the exact same results with
acceptable overhead. We chose RM and WSJ since they are
well-established baseline recipes in kaldi which result in very
different net and graph sizes for performance analysis.

For RM, we train on the speaker independent training and
development set (about 4 000 utterances) and test on the six
DARPA test runs: Mar and Oct’87, Feb and Oct’89, Feb’91,
and Sep’92 (about 1 500 utterances in total), as a joint set. We
use kaldi’s rm/s5 recipe and train the nnet2 online system
with i-vectors. The resulting DNN is about 3 MB (9 hidden
layers, 750 k parameters), the uni- and bigram decoding graphs
are 0.5 MB and 2 MB, respectively. For details of the recipe,
refer to kaldi at commit cd6562.

For WSJ, we train on the full SI284 set (about 60 h) and test
on the Dec’93 development, Nov’92, and Nov’93 test sets. We
use kaldi’s wsj/s5 recipe and also train the nnet2 online
system with i-vectors. The resulting DNN is about 14 MB (15
hidden layers, 3.6 M parameters), the pruned trigram decoding
graph is about 641 MB; since this is not about accuracy, no LM
rescoring is applied. For details of the recipe, refer to kaldi at
commit ec98e7.

In order to determine the overhead induced by VoiceGuard,
we run kaldi on an Intel Core i7-7700 CPU @ 3.6 GHz over
every corpus and report the run time of each test in Table 1. The
overhead of VoiceGuard is between 39 % and 49 % for RM and
between 98 % and 104 % for WSJ. The higher overhead for WSJ
is due to its larger model (graph) size. In the current version of

4The result could also be sent to a different party, even a third party.
5U can decrypt θ and re-encrypt it to make individual requests from

the same user unlinkable.

Table 1: Performance of VoiceGuard w.r.t. baseline kaldi.

Test WER Baseline (s) VoiceGuard (s) Overhead

RM-bigram 2.3 % 351 522 48.5 %
RM-unigram 15.4 % 585 815 39.3 %
WSJ (dev93) 18.1 % 1 427 2 854 100.1 %
WSJ (eval92) 13.4 % 876 1 736 98.2 %
WSJ (eval93) 15.5 % 518 1 058 104.3 %

SGX, enclaves can only use up to 96 MB memory and rely on
swapping to access additional data. Table 1 also shows the word
error rate (WER) of each test, which is identical for VoiceGuard
and baseline kaldi since they execute the same code on the same
models resulting in identical lattices and transcriptions.

We also differentiate between the time required to initialize
the SR-Engine and to process a single file. The model setup time
in the baseline is 0.04 s (RM-bigram) and 0.31 s (WSJ), while
the setup time for the enclave and the models in VoiceGuard is
0.95 s (RM-bigram) and 23.55 s (WSJ). Note that this overhead
is due to the initialization of enclave memory, occurs only once
when the enclave is started, and is thus not repeated across
multiple queries. The processing with RM-bigram of a 2.79 s
audio file takes 0.32 s in the baseline and 0.50 s in VoiceGuard;
with WSJ, the processing of a 6.12 s audio file takes 1.90 s in
the baseline and 4.06 s in VoiceGuard. Thus, the overhead for
the processing of one file is 56 % for RM-bigram and 114 % for
WSJ, similarly to the overheads measured for the various batches,
which indicates that the enclave setup overhead is amortized
across multiple queries. Even though processing time is doubled
in some cases, our results show that VoiceGuard enables privacy-
preserving speech processing even in real time.

7. Conclusion
We proposed VoiceGuard, a novel architecture for privacy-
preserving and efficient speech processing that supports user-
specific models and can be deployed either in the cloud or on-
premise. The evaluation of our prototype implementation demon-
strates applicability for speech recognition in real time. Besides
speech recognition, VoiceGuard’s generic architecture works for
related tasks such as speaker verification or voice biometrics,
including emotion recognition and medical speech processing.

One core aspect to take into consideration when implement-
ing this architecture in production systems is the model size:
both AM and LM need to be loaded into the secure enclave, in
turn causing computational overhead both at initialization and
at run time. While small models such as RM (or models for
speaker verification) require almost no memory, typical high-
accuracy ASR systems would use much larger models than the
WSJ models evaluated in this experiment.

Thus, as part of future work, we will explore distributing
the processing across multiple SGX-enabled nodes and optimize
performance for more accurate models with larger memory re-
quirements. We will also determine the overhead incurred by
employing protection mechanisms against side-channel attacks.

8. Acknowledgments
This work was co-funded by the DFG as part of projects P3, S2,
and E4 within CROSSING, by the German Federal Ministry of
Education and Research (BMBF) and the Hessen State Ministry
for Higher Education, Research and the Arts (HMWK) within
CRISP, and by the Intel Collaborative Research Institute for
Collaborative Autonomous & Resilient Systems (ICRI-CARS).

1306



9. References
[1] M. Marlinspike, “Technology preview: Private contact discov-

ery for Signal,” https://signal.org/blog/private-contact-discovery/,
September 2017.

[2] M. Russinovich, “Introducing Azure confidential comput-
ing,” https://azure.microsoft.com/en-us/blog/introducing-azure-c
onfidential-computing/, September 2017.

[3] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech Recog-
nition Toolkit,” in Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE Signal Processing Society, 2011.

[4] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in Symposium on Security
and Privacy (S&P). IEEE, 2017.

[5] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scal-
able Provably-Secure Deep Learning,” CoRR, vol. abs/1705.08963,
2017.

[6] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Net-
work Predictions via MiniONN transformations,” in Conference
on Computer and Communications Security (CCS). ACM, 2017.

[7] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A Hybrid Secure Computa-
tion Framework for Machine Learning Applications,” in Asia Con-
ference on Computer and Communications Security (ASIACCS).
ACM, 2018, to appear.

[8] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
“EzPC: Programmable, Efficient, and Scalable Secure Two-Party
Computation,” IACR Cryptology ePrint Archive, vol. 2017/1109,
2017.

[9] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A Low Latency Framework for Secure Neural Network Inference,”
IACR Cryptology ePrint Archive, vol. 2018/073, 2018.

[10] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy,” in Interna-
tional Conference on Machine Learning (ICML). JMLR, 2016.

[11] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep Neu-
ral Networks over Encrypted Data,” CoRR, vol. abs/1711.05189,
2017.

[12] P. Koeberl, V. Phegade, A. Rajan, T. Schneider, S. Schulz, and
M. Zhdanova, “Time to Rethink: Trust Brokerage Using Trusted
Execution Environments,” in Trust and Trustworthy Computing
(TRUST), ser. LNCS, vol. 9229. Springer, 2015.

[13] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the Use of Intel SGX for Secure Many-Party
Applications,” in System Software for Trusted Execution (SysTEX).
ACM, 2016.

[14] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi,
G. Scerri, and B. Warinschi, “Secure Multiparty Computation from
SGX,” in Financial Cryptography and Data Security (FC), ser.
LNCS, vol. 10322. Springer, 2017.

[15] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learn-
ing on Trusted Processors,” in USENIX Security Symposium.
USENIX, 2016.

[16] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and
B. Thuraisingham, “Securing Data Analytics on SGX with Ran-
domization,” in European Symposium on Research in Computer
Security (ESORICS), ser. LNCS, vol. 10492. Springer, 2017.

[17] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving Machine Learning as a Service,” CoRR, vol.
abs/1803.05961, 2018.

[18] M. A. Pathak, B. Raj, S. Rane, and P. Smaragdis, “Privacy-
Preserving Speech Processing: Cryptographic and String-Matching
Frameworks Show Promise,” IEEE Signal Processing Magazine,
vol. 30, no. 2, 2013.

[19] C. Glackin, G. Chollet, N. Dugan, N. Cannings, J. Wall, S. Tahir,
I. G. Ray, and M. Rajarajan, “Privacy preserving encrypted pho-
netic search of speech data,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2017.

[20] Intel, “Intel Software Guard Extensions Programming Reference,”
2014. [Online]. Available: https://software.intel.com/sites/default/f
iles/managed/48/88/329298-002.pdf

[21] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions
and Software Model for Isolated Execution,” in Workshop on Hard-
ware and Architectural Support for Security and Privacy (HASP).
ACM, 2013.

[22] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using Innovative Instructions to Create Trustworthy Software
Solutions,” in Workshop on Hardware and Architectural Support
for Security and Privacy (HASP). ACM, 2013.

[23] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” in Workshop
on Hardware and Architectural Support for Security and Privacy
(HASP). ACM, 2013.

[24] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology (CRYPTO). Springer, 1999.

[25] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Net-
work & Distributed System Security Symposium (NDSS). Internet
Society, 2017.

[26] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privi-
leged Side-Channel Attacks in Shielded Execution with Déjà Vu,”
in Asia Conference on Computer and Communications Security
(ASIACCS). ACM, 2017.

[27] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Müller, and A. Sadeghi, “DR.SGX: Hardening SGX Enclaves
against Cache Attacks with Data Location Randomization,” CoRR,
vol. abs/1709.09917, 2017.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Communica-
tions of the ACM (CACM), vol. 21, no. 2, 1978.

[29] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” Internet Requests for Comments, RFC
5246, 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rf
c5246.txt

[30] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A.-R. Sadeghi, “HardIDX: Practical and Secure Index with SGX,”
in Conference on Data and Applications Security and Privacy
(DBSec), ser. LNCS, vol. 10359. Springer, 2017.

[31] C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical li-
brary OS for unmodified applications on SGX,” in USENIX Annual
Technical Conference (USENIX ATC). USENIX, 2017.

[32] P. Price, W. Fisher, J. Bernstein, and D. Pallett, “Resource Manage-
ment RM1 2.0,” Linguistic Data Consortium, Philadelphia, USA,
1993.

[33] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “CSR-I,II (WSJ0,1)
Complete,” Linguistic Data Consortium, Philadelphia, USA, 2007.

1307


