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Abstract
Bidirectional Long Short-Term Memory (BLSTM) Recurrent
Neural Networks (RNN) acoustic models have demonstrated
superior performance over Deep feed-forward Neural Networks
(DNN) models in speech recognition and many other tasks. Al-
though, a lot of work has been reported on DNN model adapta-
tion, very little has been done on BLSTM model adaptation.

This work presents a systematic study on the adaptation of
BLSTM acoustic models by means of learning affine transfor-
mations within the neural network on small amounts of unsu-
pervised adaptation data.

Through a series of experiments on two major speech
recognition benchmarks (Switchboard and CHiME-4), we
investigate the significance of the position of the transformation
in a BLSTM Network using a separate transformation for the
forward- and backward-direction. We observe that applying
affine transformations result in consistent relative word error
rate reductions ranging from 6% to 11% depending on the task
and the degree of mismatch between training and test data.

Index Terms — Speaker Adaptation, DNN-BLSTM, Affine
Transformation, Acoustic Modeling, Deep Neural Network

1. Introduction
The application of deep neural networks to speech recognition
has achieved tremendous success due to its superior perfor-
mance over the traditional hidden Markov model with Gaus-
sian mixture emissions. It has become the dominant acoustic
modeling approach for speech recognition, especially for large
vocabulary tasks. While it has strong modeling power through
multiple layers of nonlinear processing, it is still not immune
to many known problems such as mismatch of training and test
data. When tested in unseen conditions or on unseen test speak-
ers, performance degradation can still be expected. To address
this problem, many adaptation techniques have been proposed.
There are several categories of speaker adaptation approaches:
First, either the whole speaker independent (SI) DNN model, or
only certain layer(s) of the model are fine tuned on adaptation
data [1, 2]. To avoid over-fitting, regularization such as [2] is ap-
plied; Second, inserting and adapting speaker dependent linear
layers into the network to transform either input feature [3], top-
hidden-layer output [4], or hidden layer activations [5]; Third,
using speaker adaptive features [6], or augumenting input fea-
tures with speaker information [7]; Fourth, subspace methods
such as [8, 9, 10]; Fifth, encorporating auxiluary information
such as i-vector and speaker code into the network [11, 12, 13].

The proposed work has resemblance with [14] and [15],
where they use affine transformation to adapt a LSTM acous-
tic model. But they do so on speaker independent features.
Other works in this field include [16, 17, 18, 4] and [5], which

deal with feedforward neural networks. The proposed work fol-
lows the architecture proposed in [19], where linear networks
are inserted into specific positions of the source model with
the linear transformation matrix Ws initialized as identity ma-
trix and biases bs initialized to 0.0. In this work, we system-
atically investigate each layer individually and distinguish be-
tween forward- and backward-direction. It is crucial to inves-
tigate the effectiveness of adaptation in regards to the depth of
the network, because the abstraction increases with the depth of
a network [20]. Therefore, we would like to see how the adap-
tation performance correlates to the depth in a network. This
distrinction between forward- and backward-direction is impor-
tant, as the weights of the recurrent layers are independent for
each direction. Therefore, the weights of the affine transfor-
mation layers should be so as well. To prevent over-fitting we
employ L2-regularization. We also show, that in cases, where
speaker adapted feature space transforms are already applied
and lead to a decrease in word error rate, affine transformations
can further decrease the word error rate (WER).

In this paper, we investigate the significance of the position
of the transformation in a bidirectional Long Short-Term Mem-
ory Network using a separate transformation for the forward-
and backward-direction. We evaluate the influence of an affine
transformation for each individual layer in combination with L2

regularization centered around the unity matrix. The rest of this
paper is organized as follows. We will first briefly introduce the
affine transformation adaptation in Section 2. Then, we evaluate
our proposed method and compare it with the existing adapta-
tion methods in Section 3, and conclude the study in Section 4.

2. Adaptation framework
A practical constraint for a large scale speech recognition sys-
tem is that the system needs to serve many users. Therefore, the
user specific parameters should be kept small. The main goal of
this investigation is to develop methods to effectively adapt the
speaker independent model using a minimal number of speaker
specific parameters. Two approaches are studied in this work:
Adapting existing neural network components and adapting in-
serted affine transformation between layers.

The affine transformations are realized as additional layers
in the neural network. They usually have the same dimension
as the preceding layer and the linear function f(z) = z is em-
ployed as the activation function for these additional layers. The
speaker specific parameters are given as the weights Ws, which
are initialized to the unity matrix, and biases bs, which are ini-
tialized to 0.0. These are trained for each speaker separately.

According to the different positions of the linear layers,
they are denoted as Linear Input Network (LIN) [3], Linear Hid-
den Network (LHN) [5] and Linear Output Network (LON) [4],
where LHN can be inserted to any positions between two suc-
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Figure 1: Illustration of an affine transformation applied to the
input of the whole neural network. The striped nodes indicate
the acoustic features xt and the dashed links and nodes indi-
cate the transformation that is introduced during adaptation.
Solid links and nodes represent hidden layers from the speaker
independent model.

cessive hidden layers. A schematic of an LIN can be seen in
Figure 1. The striped block indicates the feature vector xt. The
LIN linearly transforms the observed acoustic features before
forwarding them to the speaker independent model, similar to a
constraint maximum likelihood linear regression (CMLLR).

When linear adaptation layers are inserted between l-th and
(l + 1)-th hidden layer, it is denoted as LHN-l. The concept is
visualized in Figure 2 and the calculation of the output ĥl of the
layer is shown in Eq. (1).

ĥl = W l
sh

l + bls (1)

Where hl are the activations from the l-th hidden layer. In
our case a LHN is inserted after the forward- and backward-
direction of the BLSTM and the weights and biases are inde-
pendent from each other.

Figure 2: Illustration of an affine transformation applied to the
both bidirectional hidden layers of the whole neural network.

In a typical neural network, the output layer first performs
a linear transformation of its input vector hL−1 , where

hL = q(WL
s hL−1 + bLs ). (2)

If WL
s is the output transformation layer’s weight matrix,

bLs is the output layer’s bias vector and q is the softmax function
defined as

q(x)=
exp(x)∑
exp(x)

. (3)

When adding a linear layer behind the softmax layer, the
result might not be normalized anymore due to the linear trans-
formation after the softmax normalization layer and is hence no
probability distribution anymore. Therefore, the softmax func-
tion is moved from the original output layer to the added layer.
The original output layer uses the identity activation function
instead. A illustration is shown in Figure 3. Combining the
transformation of the original output layer and the new output
layer, the resulting output ĥL of the network with linear output
transformation can be written as

ĥL = q(WL
s WLh

L−1 + bL + bLs ) (4)

Softmax

Figure 3: Illustration of an affine transformation applied be-
tween output layers weights and softmax of the network.

3. Experiments
This section describes the datasets which were used in the ex-
periments, the structure and parameterization of the baseline
systems, and the parameterization of the adaptation procedure
as well as the achieved word error rates.

3.1. Dataset

We experimentally investigated layer specific affine transforma-
tion on two different corpora. The participants of the CHiME-4
Challenge [21] were given a training corpus that was derived
from the WSJ0 SI-84 data set (approx. 18 hours) recorded with
a close-talking microphone and a multi-microphone tablet de-
vice being used in everyday, noisy environments. The dataset
contained WSJ0 speech recordings under different environment
conditions such as public transport, pedestrian area, street and
cafe. The second corpus was the 300 hour Switchboard-1 Re-
lease 2 (LDC97S62) [22] corpus for training. The results are
reported on the Hub5’00 evaluation data (LDC2002S09) which
contains two types of data, Switchboard (SWBD) – which is
better matched to the training data – and CallHome English
(CHE). The amount of available training and adaptation data
as well as the number of speakers can be seen in Table 1.
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Table 1: Speaker count and corpus duration.

Corpora # Spk. Dur. (h)

Switchboard Training 4000 283
Hub5’00 CallHome 40 1.55
Hub5’00 Switchboard 40 2.06

CHiME-4 Training 83 108
CHiME-4 Development Real 4 2.75
CHiME-4 Development Simu. 4 2.90
CHiME-4 Evaluation Real 4 2.18
CHiME-4 Evaluation Simu. 4 2.28

3.2. Baseline systems

The CHiME-4 system was trained on the data of all six micro-
phone channels as well as generalized eigenvector beamformed
data [23] presented sequentially in a single channel. Each chan-
nel contains approximately 15 hours of training data. The base-
line system uses 16-dimensional Mel-frequency cepstral coeffi-
cients as features, which were speaker adapted using CMLLR,
and has 1501 tied states. The acoustic model is a BLSTM net-
work with five layers of size 600. The mini-batch training is
carried out using stochastic gradient descent with Nadam [24].
The learning rate reduction is controlled by Newbob [25] and
the initial learning rate value is set to 10−3. In addition, the gra-
dient is distorted by Gaussian noise with an initial variance of
0.3 [26]. The cross-entropy training is regularized by a dropout
rate of 10% and L2 norm of the weights with a factor of 0.01.
For more information on the training procedure see [27]. The
recognition was done using the standard 5k lexicon and baseline
5-gram count language model.

The Switchboard system was trained on the full 283 hours
using 40-dimensional gammatone features without any adaptive
feature space transformations, as we did not observe any word
error rate reductions with speaker adapted features. The targets
were 9001 tied states. The acoustic model consists out of five
BLSTM layers with a size of 500. For the training, a dropout
probability of 10% is used together with a L2 regularization
constant of 0.01 with an initial learning rate of 0.0005 that is
controlled using the Newbob learning rate schedule. Gradient
noise is added with a variance of 0.3. We use a 4-gram lan-
guage model which was trained on the transcripts of the acous-
tic training data (3M running words) and the transcripts of the
Fisher English corpora (LDC2004T19 & LDC2005T19) with
22M running words. More details can be found in [28].

3.3. Adaptation by affine transformations

This section presents the experimental results of speaker adapta-
tion using affine transforms for both Switchboard and CHiME-4
corpora.

For both datasets the speaker adaptation procedure was the
same. In a first pass a recognition was performed on the speaker
independent baseline. This was used to generate the targets for
the unsupervised adaptation process. The adaptation datasets
were split into separate training and cross-validation sets, where
90% were used for training and 10% for cross-validation. The
cross-validation set was also used to control the learning rate
via Newbob. For each possible position, the hyper-parameters
learning rate and the L2 regularization were optimized. We
came to the conclusion that for the first three layers an initial
learning rate of 0.001 is optimal, where as for deeper layer’s a

value of 10−5 achieved the best results. Regarding the L2 con-
straint, there was little influence as long as the regularization
was centered around the unity matrix. We choose a regular-
ization constant of 0.01. If the L2 regularization was centered
around 0 we observed slight degradation in adaptation perfor-
mance of about 0.1% to 0.2% word error rate absolute.

Table 2: WERs (in %) on Hub5’00 for the affine transformation
adaptation as well as full speaker dependent fine tuning of the
speaker independent model on the adaptation data.

Adaptation Layer CHE SWBD Hub5’00

SI-BLSTM 20.9 10.6 15.8

LIN 0 20.3 10.6 15.5
LHN 1 19.7 10.3 15.0
LHN 2 19.7 10.4 15.1
LHN 3 19.5 10.3 14.9
LHN 4 19.9 10.5 15.2
LHN 5 20.3 10.5 15.5
LON 6 20.3 10.5 15.5
SA-BLSTM all 20.2 10.6 15.4

VTLN-FBank-LSTM [15] — 15.2 21.6
LIN [15] 0 — 15.2 21.1
LHN [15] — — 15.6 21.5

DNN-SI [11] — 16.1 —-
DNN-SI+ivecs [11] — 13.9 —

For Switchboard the word error rates for the baseline sys-
tem and for each possible position of the speaker adaptation are
listed in Table 2. The speaker independent baseline is denoted
as SI-BLSTM, where as the speaker dependent fine tuned model
is denoted as SA-BLSTM. This does not include any added
affine transformations. We can observe improvements on every
position for the CallHome subset, but only improvements for
LHN and LON in the case of Switchboard. This corresponds
to earlier finding that feature space adaptation shows little to no
improvement on Switchboard. The optimal position is in the
middle of the network. This is the case for both subsets of the
evaluation corpus. In contrast to [15], we can report improve-
ments even on the Switchboard part of the dataset, when using
recurrent neural networks. On the other hand, does concatena-
tion of i-vectors to the input data [11] also improve performance
on the Switchboard part of the dataset. The improvements of
learning specific speaker dependent layers outperform a com-
plete speaker dependent fine tuning of the network.

The word error rates for the CHiME-4 baseline system and
for each possible position of the speaker adaptation are listed
in Table 3. Even though CMLLR has been used in the baseline
system, we can see reductions of up to 11% WER when ap-
plying LHN-2. Concurring with the Switchboard results LHN
outperforms speaker dependent fine tuning, but the optimal po-
sition for the LHN is different. Similarly, layers at the beginning
to middle show the highest gains. We can further see that the
gains are consistent with the development set and the evaluation
set.

For CHiME-4 we also investigated the required amount of
adaptation data. We observed that about 15 minutes of data
were enough to achieve 90% of the improvement and below 4
minutes no improvements could be seen.
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Table 3: WERs (in %) on the real and simulated, development
and evaluation datasets from CHiME-4 for the affine transfor-
mation adaptation as well as full speaker dependent fine tuning
of the speaker independent model on the adaptation data.

Dev. set Eval. set

Adaptation Layer Real Simu. Real Simu.

CMLLR-BLSTM 4.4 4.0 5.4 4.2

LIN 0 4.2 3.8 5.2 3.9
LHN 1 3.9 3.8 4.8 3.8
LHN 2 4.0 3.7 4.8 3.6
LHN 3 4.1 4.1 5.0 4.0
LHN 4 4.3 4.2 5.6 4.1
LHN 5 4.5 4.3 5.5 4.1
LON 6 4.6 4.3 5.6 4.2
SA-BLSTM all 4.2 4.0 5.3 4.2

4. Conclusions
In this paper affine transformations for speaker adaptation have
been applied to bidirectional Long Short-Term Memory acous-
tic models. Experimental results showed that affine transfor-
mations could give consistent improvements on a variety of
datasets and outperformed speaker dependent fine tuning. They
even gave improvements on top of constraint maximum likeli-
hood linear regression. We could further show that using affine
transformations in the middle of the network gave the best re-
duction in word error rate, but the specific layer had to be opti-
mized for each corpus individually.
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