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Abstract
Traditionally systems for term extraction use a two stage ap-
proach of first identifying candiate terms, and the scoring them
in a second process for identifying actual terms. Thus, research
in this field has often mainly focused on refining and improv-
ing the scoring process of term candidates, which commonly
are identified using linguistic and statistical features. Machine
learning techniques and especially neural networks are cur-
rently only used in the second stage, that is to score candidates
and classify them.

In contrast to that we have built a system that identifies
terms via directly performing sequence-labeling with a BILOU
scheme on word sequences. To do so we have worked with dif-
ferent kinds of recurrent neural networks and word embeddings.

In this paper we describe how one can built a state-of-the-
art term extraction systems with this single-stage technique and
compare different network types and topologies and also exam-
ine the influence of the type of input embedding used for the
task. We further investigated which network types and topolo-
gies are best suited when applying our term extraction systems
to other domains than that of the training data of the networks.
Index Terms: term extraction, recurrent neural networks,
LSTM

1. Introduction
At KIT we have a developed the Lecture Translator a system
for the simultaneous transcription and translation/interpretation
of lectures [1]. Further, the system also offers an archive of the
recorded lectures that contains the video stream of the projec-
tor signal together with the lecturer’s speech, enriched by the
transcription of the speech and its translation as subtitles to the
video. Through the transcription and translation a 90 minute
lecture can now be searched for specific topics. At the same
time we also want to enhance the learning experience of the
students by automatically cross-linking the content of the lec-
ture with additional external resources. In order to do so, we
first need to automatically detect or extract relevant terms in the
transcript for which we can then, in a second step, link to rele-
vant external resources.

In this paper we describe our research into this first step,
the automatic extraction of relevant terms. We approached the
problem as a sequence labeling problem, in which the word se-
quence of the transcript is the sequence which is labeled with
labels indicating relevant terms in the transcript, e.g., via a
BILOU labeling scheme [2]. We approached this sequence la-
beling problems with neural networks, especially recurrent neu-
ral networks, which have shown state-of-the-art performance on
several sequence labeling tasks in natural language processing
in the past [3, 4, 5, 6, 7]. Optimizing network structure and sev-
eral other parameters experimentally we were able to design a

single stage system that gives state-of-the-art performance on a
common term extraction task.

1.1. Term Extraction

Term extraction (sometimes also called term recognition) is the
task of automatically identifying all domain-specific terminol-
ogy from a given corpus. In this, term extraction is a sub-task
of information retrieval, which can aid various other fields, such
as machine translation, ontology creation, knowledge manage-
ment or document indexing. Contrary to keyword extraction,
which aims at determining only the most representative words
for a given input document, the number of identified terminol-
ogy is not limited to a few words. Instead it is intended to extract
terminology in its entirety. Thereby, the terms extracted can be
single words or can be sequences of several words.

Traditionally many term extraction systems rely on a hybrid
approach: First linguistic filtering is applied to identify syn-
tactically plausible term candidates; then, in a second step, the
candidates are scored and classified using statistical features,
special measures or machine learning.

In contrast to that we applied a direct sequence-labeling ap-
proach by making use of recurrent-neural networks (RNNs). In
our work we researched and compared several strategies in do-
ing so, focusing on aspects such as the importance of the em-
beddings of the words in the word sequence, different network
architectures, and also on the generalization capabilities of the
system to data that is from a different domain then the training
data.

2. Related Work
Most recent term extraction systems in literature use a two step
approach. First candidates are extracted by either noun-phrase
POS patterns or by simply taking all possible ngrams, which do
not contain stop words, into account. Stop words are frequent
words, which hold no deep semantic content, such as conjunc-
tions, articles or prepositions. These candidates are then classi-
fied by scoring them using various machine learning techniques.

[8] proposes a method starting by tokenizing and splitting
the corpus into 1-5 grams. To reduce the number of ngrams,
they are filtered by stop words. For each of these ngrams ten
common term extraction features such as total term frequency,
c-value, weirdness, etc. are selected. The selected features are
classified using either a Random Forest, a Linear Support Vec-
tor Machine, a Multinomial Naive Bayes classifier, Logistic Re-
gression or and SGD classifier. While there is no algorithm,
which performs best on all test sets, Random Forest achieves
the highest scores most often.

Another machine learning approach is given in [9]. Before
selecting candidate terms, the system standardizes word vari-
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ations from the text and annotates POS tags to it. Numbers,
punctuation, single characters, stop words and conjugations of
”to be” are removed. The remaining words are considered pos-
sible terms. Features from statistical and linguistic knowledge
and contrastive corpora are calculated for each unigram. The
most representative features for term classification are selected
by an algorithm based on either correlation or consistency and
used with JRip, Naive Bayes, J48 or SMO from WEKA, a java
based text classifier. Though none of the algorithms performs
best on all of the test sets, the approach achieved state of the art
scores on unigram extraction in Brazilian Portuguese.

[10] proposes a method enabling co-training using neural
networks. Before candidate terms are selected, plurals of nouns
are removed and all words are converted to lowercase. An iden-
tifier based on a noun phrase POS pattern and an identifier based
on ngram chunking and stop word delimiters select possible
terms. Co-training aims to build a stable classificator with only
limited annotated data and a majority of unannotated data. It
requires two different views on the data, which is achieved by
putting the candidate terms in an LSTM and a CNN. After each
iteration the most confident term predictions are added to the
annotated data.

In contrast, in our work we do not perform any prior candi-
date selection, but perform sequence labeling via recurrent net-
works directly on the word sequence of the texts. To our knowl-
edge there is no other system of this kind described in literature.

3. Data
We performed our experiments on the GENIA 3.02 corpus [11]
and the ACL RD-TEC 2.0 corpus [12]. The GENIA corpus
was used as primary training corpus, while the RD-TEC corpus
was mainly used for testing performance on an out-of-domain
corpus.

GENIA contains 1,999 Medline abstracts from PubMed. In
this collection of biomedical literature terms are assigned to
several categories of terms, e.g., DNA domain or region. For
the sake of simplicity, we did not differentiate between these
categories of terms since they are all specific to the biomed-
ical domain. We also removed all sentences from the corpus
consisting of only one word, as they do not hold any substan-
tial content. This resulted in a total of 18,427 sentences with
437,307 words and 76,463 annotated terms.

The ACL RD-TEC 2.0 corpus consists of 300 abstracts
from the ACL Anthology Corpus. It contains 1,384 valid sen-
tences with 29,921 words and 2,104 annotated terms. Again,
we removed sentences with only one word from the corpus.

For training, the corpus data was split into sentences and
then partitioned randomly into 80% training data, 10% valida-
tion data and 10% test data. For the GENIA corpus, the training
set contained 14,741 sentences, the validation set 1,842 and the
test set 1,844. Since the batches for the neural networks re-
quired sequences of equal length, the sentences were sorted by
length in each of these sets. Shorter sequences were padded at
the end with special tokens.

Parallel to the input sequence, a BILOU label sequence was
generated. Each of the labels represents a word’s role in the
sequence. Single-word terms were tagged with U (unit), multi-
word terms with B I* L (begin inside* last) and non-terms with
O (outside).

When the network classified a sentence on character level,
the BILOU label sequence had to be altered. It was necessary to
assign a label to each character in a word, this means the same
label was assigned to all characters in the respective word.

4. Term Extraction with Recurrent Neural
Networks

Term extraction can be seen as a sequence labeling problem.
Whether a word qualifies as a term depends on its syntactic and
semantic features. Syntactic features depend on the features
of the surrounding words. This characteristic makes sequence
labeling a plausible choice.

As RNNs, and among them LSTMs [13] and gated recur-
rent units networks (GRUs) [14], are especially suited for per-
forming sequence labeling, we focused on LSTMs and also
contrasted them against GRUs. We experimentally evaluated
several architectures for the task at hand and optimized several
meta-parameters incrementally.

4.1. Embedding

Finding a good feature representation for sequences of words
is a common problem when processing natural language with
neural networks, as one-hot encodings lead to high input dimen-
sionalities due to large vocabulary sizes. It is therefore common
practice to perform word embeddings that project the discrete
one-hot-encoding vector of words to a lower dimensional but
continuous vector [15]. These embeddings are usually trained
by building a classificator for an auxillary classification task,
such as skip-grams [16]. Since test data will always feature
words that have not been seen during training, the proper han-
dling of unknown words is important when performing embed-
ding. There are two general methods for dealing with out-of-
vocabulary words:

1. A pretrained word embedding with an UNK token,
which is used for all out-of-vocabulary words.

2. A character-level embedding, which is independent from
the vocabulary size.

In our experiments we contrasted these two ways of per-
forming embedding.

Also, since embeddings are already trained to perform cer-
tain classification tasks we also investigated their classification
power for the term extraction task by performing classification
on word embeddings using a single softmax classification layer.

4.1.1. Word-level Embedding

For word level embeddings, we used a pretrained embedding,
namely the GloVe 6B token embedding with 300 dimensional
vectors[17]. This word representation is trained in an unsu-
pervised manner on the non-zero entries of a word-word co-
occurence matrix. Each entry represents the frequency of which
two words occur along with each other. Several different ver-
sions of GloVe embedding can be downloaded from the Stan-
ford website. These word vectors were set to untrainable so that
they could not be altered during the training of the network. We
manually added an UNK token, a start of sentence token (SOS)
and an end of sentence token (EOS). The EOS token was used
to padd shorter sequences.

The vocabulary comprises 400,000 lowercase words, so be-
fore each word was translated into its respective index, sen-
tences were transformed into lower case and all punctuation was
removed.

4.1.2. Character-level Embedding

The character embedding input vocabulary consists of Python’s
string.printable characters as well as an UNK token. The UNK
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token is included, as we do not want the program to crash if
there are non-ASCII characters in the input sentences when we
do not apply any preprocessing. Shorter sequences are padded
with a ’.’ instead of a special EOS token. Thus, the vocabulary
size is 101. The character embedding was either trained end-
to-end with the input sequences or as part of a language model
(intending to predict the next most likely character) and the re-
sults compared against each other. In the latter case, the vectors
were set to untrainable so that they could not be altered during
the training of the sequence classifier. Various tests indicated
good results for an embedding dimension of 50.

For our tests with character embedding, we applied differ-
ent grades of preprocessing, i.e. no preprocessing at all, trans-
formation to lowercase characters and removal of all punctua-
tion combined with only lowercase characters. To ensure that
these different grades of preprocessing do not lead to different
number of labels in the same sentence, which may distort com-
parability of the scores, an additional word list and word label
list was generated. During the label calculation, the character
sequence was aligned with the word list. The labels were then
calculated over the characters of each word by either majority
voting or score summation.

4.2. Network Topology

The general structure of our model consists of three segments:
first an embedding layer, secondly a sequence classifying layer
and lastly a linear layer mapping to the five output classes of
BILOU encoding. For the second segment we analyzed differ-
ent configurations:

a) one softmax layer with input window sizes 1, 3 or 5.

b) unidirectional LSTM or GRU

c) bidirectional LSTM or GRU

d) multi-layer LSTM or GRU

4.3. Network Training

The neural network was trained using stochastic gradient de-
scend to minimize cross-entropy loss with a new bob scheduler
for the learning rate. I.e., if the validation loss did not decrease
by more than a defined threshold, the learning rate was via ex-
ponential decay. Training was finished when after the switch to
exponential decay the validation loss again did not decrease by
more than the defined threshold.

5. Experimental Results
5.1. Metric

To measure the performance of the network we calculated pre-
cision, recall and f-score. The scores are calculated separately
for every label and batch and then arithmetically averaged.

We defined the baseline as the score achieved, when the
most common label (O) is chosen for every word.

5.2. Results

As the test, validation and training set as well as the batches
were selected randomly for every test run, the test results for
each individual run differed slightly. All given results are aver-
aged over the number of tests.

To test out the capabilities of the network, we experimented
with different batch sizes, hidden sizes and number of layers.
We did not adjust the learning rate for every experiment as we

Figure 1: Impact of different hidden sizes on F-score

Figure 2: Testing different batch sizes with the same learning
rate of 0.001.

wanted to determine the stability of the configuration. Stabil-
ity in this context means whether the training converges for all
test runs and how large the deviation of a single test run to the
established mean is.

The results of different hidden sizes in context with either
one or two layers is visualized in Figure 1. When word em-
bedding is used, only very small hidden sizes impact the perfor-
mance. Larger hidden sizes increase the stability of the results,
i.e. the deviation between single test runs becomes smaller. It
is also shown that two layers have an enhancing effect for small
hidden sizes.

Character embeddings are more dependent on a well cho-
sen hidden size. For sizes below 100, the results differ notably
between test runs. Like with the word embedding, using two
layers has a slightly positive effect for small hidden sizes. For
larger hidden sizes, the results are slightly stabler, but not con-
sistently better.

For both kinds of embeddings, there is a kind of thresh-
old. After passing this threshold, an increase of the hidden size
mostly affects the stability and does not improve the results fur-
ther.

Figure 2 shows the result of different batch sizes applied to
the same network with the same learning rate. The gaps indi-
cate that the test run did not converge, because the loss became
nan. With larger batch size, the training becomes increasingly
unstable. Some test runs may still converge due to a ”well se-
lected” random test set, while for others the learning rate is too
high and needs to be adjusted.
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f-score precision recall
baseline GENIA 15.99 20.27 13.28

softmax-1 51.78 49.67 54.08
softmax-3 78.56 77.72 79.41
softmax-5 79.87 79.67 80.08

u-LSTM 75.47 75.81 75.13
b-LSTM 86.38 87.06 85.72

b-LSTM-2 86.73 87.03 86.18
u-GRU 74.70 74.65 74.75
b-GRU 86.17 86.71 85.64

b-GRU-2 86.89 87.27 86.51
Table 1: Results of classification with word embedding. linear-
n indicates one softmax layer with window size n. In x-
LSTM/GRU-n x defines uni- or bidirectional, n accounts for
the number of layers.

The results of the network using word embeddings are
shown in Table 1. We used the same batch size of 5 and learning
rate of 0.001 for all listed configurations. The hidden size was
set to 200 for all LSTMs and GRUs.

The listed linear configurations consist of only one softmax
classification layer. Different window sizes are used to include
a few words surrounding the word, which is currently classified.
For a window size of three this means that one word prior and
one word subsequent to the respective word are included, for a
window size of five, two in both directions. Additionally con-
sidering the surrounding words shows a large improvement of
the performance.

Furthermore, the results show that the use of a bidirectional
recurrent neural network provides a significant improvement
compared to a unidirectional one. Combining this knowledge
with what was shown from softmax-3 and softmax-5, it is clear
that words prior and subsequent to the considered word are im-
portant for its classification.

GRUs require fewer weights to be trained, which in some
cases improves the results. From the given results this expecta-
tion cannot be confirmed. For a single layer GRU the results
are slightly below those of a single layer LSTM, for a two-
layered GRU slightly better. There is no consistent improve-
ment recoginzable.

unidirectional bidirectional
LSTM LSTM-2 LSTM LSTM-2

end2end 74.46 75.05 88.97 89.22
pretrain 73.84 74.88 89.04 89.75

Table 2: F-scores of different configurations with end-to-end
trained and pretrained character embeddings. No text prepro-
cessing is applied to the sentences.

For the networks utilizing character embedding, the hidden size
of the LSTMs was set to 400.

The results seen in Table 2 show that adding multiple layers
provides little improvement. As with word embeddings, classi-
fying sentences bidirectionally gives a considerable advantage.
For unidirectional LSTMs the results from word embedding are
slightly better. Using bidirectional LSTMs, character embed-
dings show better results.

The character embeddings trained as part of a language
model show nearly no improvement. This indicates that the
model trained end-to-end can calculate a good representation
fitting the classification purpose for each character.

end-to-end pretrained
precision recall precision recall

no pre- 89.69 88.75 90.30 89.25processing
lowercase 88.70 88.58 88.95 88.55

lower case and 87.44 86.82 86.37 84.40no punctuation
Table 3: Results for different grades of preprocessing. For all
tests, the same number of layers and hidden size is used.

Table 3 shows the results of different grades of preprocess-
ing applied to the data. Both LSTMs have two layers with a
hidden size of 400. Batch size and learning rate are identical.

To objectively compare the performance, all scores are cal-
culated over the word list. Thus, the enlarged number of char-
acters (due to not removing punctuation) does not influence the
label balance of the text. The scores indicate that removing
punctuation does not improve performance. Labeling sentences
without any kind of preprocessing applied to them yields the
best results. We could not determine whether this outcome re-
sults from the slightly enlarged amount of training data or of
actual content-related information, the punctuation provides.

precision recall
baseline ACL 22.27 19.35

character 44.36 52.31
word 41.79 50.38

Table 4: Comparison of performance of word and character
embedding on an out-of-domain corpus. For both networks, the
previously shown best configuration is selected.

The results in Table 4 show a significant drop in perfor-
mance for tests run on an out-of-domain corpus. In accordance
with previous results, character embedding yields better results
than word embedding. These results suggest, that the LSTM
adapts to certain properties in the sentence or word structure,
which differ for biomedical and computational linguistic dic-
tion.

6. Conclusion
Comparing the performance of our approach to existing systems
is difficult for two reasons. First of all, we perform sequence-to-
sequence classification and do not output a list of terms, which
will be compared to a predetermined list for the f-score calcula-
tion. Secondly, there is for the moment no possibility to identify
nested terms (terms, which consist of several words, of which
subsets are defined as terms as well), as a word can only be as-
signed one label at a time. Nevertheless, the scores achieved
with this model are clearly state-of-the-art and impressive con-
sidering the simplicity of the approach.

Contrary to existing systems, our approach does not rely on
the quality of the POS tagger and does not require any linguis-
tic knowledge. This makes it easy to apply it to other languages
even without knowledge of their syntactical properties. Our test
results show a stable and good performance on in domain sen-
tences, if the training corpus is large enough. This shows that
recurrent neural networks can successfully be applied to term
extraction.

Finally when planning on applying the trained models to
other domains than that of the training data, it is beneficial to
use a character embedding instead of a word embedding.
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