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Abstract
Recently, various types of Voice-based User Interfaces (VUIs)
including smart speakers have been developed to be on the mar-
ket. However, many of the VUIs use only synthetic voices to
provide information for users. To realize a more natural inter-
face, one feasible solution will be personifying VUIs by adding
visual features such as face, but what kind of face is suited to a
given quality of voice or what kind of voice quality is suited to a
given face? In this paper, we test methods of statistical conver-
sion from face to voice based on their subjective impressions.
To this end, six combinations of two types of face features, one
type of speech features, and three types of conversion models
are tested using a parallel corpus developed based on subjective
mapping from face features to voice features. The experimental
results show that each subject judge one specific and subject-
dependent voice quality as suited to different faces, and that the
optimal number of mixtures of face features is different from
the numbers of mixtures of voice features tested.
Index Terms: subjective impressions, face to voice conversion,
conditional variational autoencoder, Gaussian mixture model,
probabilistic canonical correlation analysis

1. Introduction
In the last two decades, a variety of spoken dialogue systems
(SDSs) with embodied conversational agents (ECAs) have been
developed [1–6]. In those SDSs, human agents talked to and
listened to users on a screen and the agants can play the roles of
salesman, language teacher, medical doctor, etc. More recently,
a small device such as smart speaker has powerful speech in-
put/output modality and it has become popular even without
a human-shaped body. In the future, smart speakers will be
personified because ECAs are useful to realize more natural
human-machine interaction as discussed in [7]. On the other
hand, the modality of spoken language has been technically
introduced into doll toys, who have become able to entertain
children and even elderly people by speaking. When a smart
speaker is personified, the question to ask is, what kind of face
should be suited to a given voice quality? Also, when one wants
to have his/her doll toy talk, an inverse question is possible,
what kind of voice quality should be suited to a given face?

In this paper, we examine methods of statistical conversion
from face to voice in order to give an adequate quality of voice
to a voiceless but human-shaped object, such as toy dolls, text-
based dialogue systems with a cyber agent, etc. For conversion
from face to voice, we put a focus on subjective impressions of
face and voice. In [8–12], it was implied that, based on sub-
jective impressions of the face of a person, human subjects can
imagine the voice quality of that person. It is very natural, how-
ever, that the real voice quality of that person is different from
the imagined voice quality. In this paper, we emphasize use of
the imagined voice quality, not the real one.

The paper is organized as follows. In Section 2, we de-
scribe some related works about face features, voice features,
and models for statistical conversion. In Section 3, we introduce
our tested methods. After that, in Sections 4, and 5, collection
of subjective mappings from face to voice and evaluation of the
tested methods are described, respectively. Finally, in Section
6, this paper is summarized.

2. Related works
As for face features, in this paper, we refer to a top-down
method and a bottom-up method. The former firstly detects face
landmarks with Constrained Local Neural Field (CLNF) [13]
and by using the landmarks, the outlines of facial parts such as
nose and mouth are obtained. The latter views a face image as
a set of dots and, by using Conditional Variational Autoencoder
(CVAE) [14], it can embed an input face image to a latent fea-
ture vector using external labels that represent non-facial fea-
tures of that image. By using this model, from a latent feature
vector with external labels, a face image can be generated or re-
stored. As discussed in [15, 16], different latent vectors can be
converted into different faces and we can discuss the function
of each dimension of the latent vector.

Eigenvoice is one of the well-known methods to represent
speaker characters [17], which we consider to be the voice
quality of interest. Eigenvoice is calculated through Princi-
pal Component Analysis (PCA) performed over supervectors
of speaker-dependent Gaussian Mixture Models (SD-GMMs).
Speech samples of a given eigenvector can be generated by
Eigenvoice Conversion (EVC) [18]. In this paper, we formu-
late face to voice conversion as face to eigenvoice conversion.

A GMM of joint vectors of {X} and {Y } is often used to
implement conversion between the two spaces. The relation be-
tween {X} and {Y } is modeled explicitly as covariance terms
of each Gaussian distribution in the GMM. Voice conversion or
speaker identity conversion is often implemented using GMM
(GMM-VC) [19]. On the other hand, in order to search for the
latent variable between the two spaces, which can capture latent
relations between them, Canonical Correlation Analysis (CCA)
was proposed [20]. Probabilistic CCA (pCCA) [21] and mix-
ture of pCCA (mPCCA) [22] were also proposed, where {X},
{Y }, and their latent variable are assumed to follow Gaussian
distributions. In [22], articulatory-to-acoustic conversion was
examined based on mPCCA. In this paper, conversion based on
deep neural networks is not examined because of the size of
training data.

3. Tested features and models
3.1. The overview of the tested methods

In this paper, six combinations of two face features, eigenvoice,
and three conversion models are examined. The overview of the
experiments is shown in Figure 1a. The two face features tested
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Figure 1: (a) The overview of our tested statistical conversion from face to voice, and (b) Iconified Face Features (IFFs)

are CVAE features and new features, which are landmark-based
and proposed as Iconified Face Features (IFFs) in this paper.
IFFs will be explained shortly in Section 3.2. For conversion,
the three models of GMM, pCCA, and mPCCA are tested. Gen-
eration of voices is done using the framework of EVC.

To realize face-to-voice conversion, a parallel corpus of
face features and voice features has to be prepared. In this pa-
per, not a real mapping, e.g. the face and the voice of a person,
but subjective mappings from faces to voices are used. Collec-
tion of subjective mappings is explained in Section 4.

3.2. Iconified Face Feature (IFF)

CLNF converts a given face image to a set of dots that can
capture face landmarks, shown in Figure 1a. To extract their
IFFs, the landmarks are converted into iconified facial parts, il-
lustrated in Figure 1b, and the locations of the parts are auto-
matically detected. The IFFs are 15 geometrical parameters to
represent the shape and the location of these parts. Finally, a
face image is converted into a 15-dimensional vector.

3.3. GMM-based conversion from face to voice

Here, x and y denote a dx-dimensional vector of the input face
feature and a dy-dimensional vector of the output voice feature,
respectively. If a parallel corpus {xi,yi}N

i=1 are given, the pa-
rameters of GMM λ = {αm,µ(z)

m ,Σm
(z)}M

m=1 are trained to
maximize the joint probability as follows,

λ̂ = arg max
λ

N∏

i=1

M∑

m=1

αmN (zi;µ
(z)
m ,Σm

(z)), (1)

µ(z)
m =

[
µ(x)

m

µ(y)
m

]
, Σ(z)

m =

[
Σ

(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

]
, (2)

where zi = [xT
i ,yT

i ]T and M is the number of mixtures.
By using the trained parameters λ̂, a face feature x can be

converted to a voice feature ŷ as follows,

ŷ = arg max
y

p(y|x, λ). (3)

In GMM-VC, variance and covariance matrices can be cross di-
agonal because both of input and output features are speech fea-
tures. However in GMM-based conversion from face to voice,
the domain of x is different from that of y. Therefore, covari-
ance matrices, Σ(xy)

m and Σ
(yx)
m have to be full matrices.

3.4. mPCCA-based conversion from face to voice

[22] formulated the probabilities of mPCCA as

p(x|h, zm) = N (Umh+ bm,Γm), (4)
p(y|h, zm) = N (V mh+ dm,Λm), (5)

p(h) = N (0, I), (6)
p(zm) = ϕm, (7)

where h and zm are latent variables. If a parallel corpus
{xn,yn}N

n=1 are given, the parameters of M -mixture mPCCA
Θ are trained to maximize the joint probability as follows,

Θ̂ = arg max
Θ

N∏

n=1

p(xn,yn), (8)

where Θ={Um, bm,Γm,V m,dm,Λm, ϕm}M
m=1. The vari-

ance matrices Γm and Λm can be diagonal because x and y are
not a joint vector. These equations are available when pCCA-
based conversion is tested because pCCA is mPCCA in the case
of M=1. In Eq. (8), Θ can be initialized by pCCA parameters
θ which can also be calculated by using Eq. (8), and θ can be
initialized by deterministic values proposed in [21].

By using the trained parameters Θ̂, a face feature x can be
converted to a voice feature ŷ as follows,

ŷ = arg max
y

ln p(y|x, Θ̂). (9)

Eq. (9) can be solved by EM algorithm and in the M-step of
Eq. (9) ŷ can be updated as follows,

ŷ =

(∑

m

Gm

)−1∑

m

Gm (ψm + dm) , (10)

Gm =
⟨
zm|x, ŷold

⟩
Λ−1

m , (11)

ψm = V m

⟨
h|x, ŷold, zm

⟩
, (12)

where ⟨·⟩ denotes an expectation and ŷold means ŷ in the pre-
vious M-step. Although ŷold can be initialized by values based
on GMM as in [22], in order to consider the latent variables ex-
plicitly, we propose the initialization of Gm and ψm based on
expectations of x, h, and zm as follows.

Gm = ⟨zm|x⟩Λ−1
m , (13)

ψm = V m ⟨h|x, zm⟩ , (14)
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This initialization was inspired by a deterministic method
in [22].

4. Collection of face-to-voice mappings
At fist, we prepared a corpus of face images of Japanese male
adults and another corpus of Japanese male voices indepen-
dently. Then, for the conversion experiments, subjective map-
pings from faces to voices were collected from 17 Japanese
male adult subjects. They were asked to select the voice best
suited subjectively to the impression of a given face. The
voices used are those of 73 speakers selected from the JNAS
database [23]. The face images are those of 71 persons, which
are provided by the Morishima laboratory of Waseda Univer-
sity. In order to simplify the experimental procedure, a binary
eigenvoice-based clustering tree was built for the voices in ad-
vance, and it was used to select the best voice for a given face
efficiently.

As a result, it was revealed that the relationship between
faces and voices was not one-to-one, but many-to-one. Each
subject selected one specific speaker for various faces and the
specific speaker depends on subjects. For example, one subject
selected one speaker for 24 faces. This many-to-one relation-
ship supports the finding obtained in [12] about human perfor-
mance of identity matching. The authors said that some people
look and sound more similar than others.

5. Experiments
In this section, we conducted three experiments about extrac-
tion of face features, extraction of voice features, and statistical
conversion from the former features to the latter features.

5.1. Extraction of face features

5.1.1. Experimental conditions

In the first experiment, two different kinds of face features were
extracted by using two feature extractors. To train these two
extractors, another huge corpus of face images was used. The
corpus is the MORPH, which contains 54,147 face images [24].
For each face image, the location of its face was automati-
cally detected by OpenCV1 and the detected faces were used for
training the two extractors. In the case of IFFs, they were con-
verted from the 68 face landmarks, which were extracted with
CLNF implemented in OpenFace [25]. The obtained IFFs were
compressed through PCA. In the case of CVAE, the encoder
and decoder were implemented using four and five layers’ Con-
volutional Neural Networks (CNNs), respectively. 50,000 face
images and 4,147 face images were used for training and val-
idation, respectively. We used a latent variable µ of CVAE as
a face feature which denotes the mean vector of the posterior
distribution. It characterizes an input image. The dimension of
µ, namely dµ, was 3 or 10. The method for optimization was
the Adam [26], the batchsize was 100, the activation function
of the last layer of encoder was the identity function, that of the
last layer of decoder was sigmoid function, and that of the other
layers was the ReLU [27].

5.1.2. Experimental results

In the case of IFFs, as shown in Figure 2, face landmarks can be
detected correctly from a given face image, which is abstracted
moderately to be an icon image based on IFFs. The cumulative
contribution ratio of PCA was over 95% by using only the first

1http://opencv.jp/ [Accessed 19 January 2017]

original� Face Landmarks� icon�

Figure 2: Face landmarks and the icon image based on IFFs

Average	Face� w3 = �16w1 = 46

Figure 3: Face icons with different values of the i-th principal
component wi

to the third components. Figure 3 shows several examples of
face icons that are generated by changing the values of principal
components. More examples are available at https://goo.
gl/4NCvFQ.

In the case of CVAE, although dµ was smaller than the val-
ues adopted in previous works [15, 16], it was experimentally
confirmed that CVAE-based reconstructed images preserved fa-
cial identities well even if dµ=3. In order to examine how var-
ious face images can be generated by changing the values of µ,
the following variation of µ was tested,

µ(i) = [0, 0, ..., 0, µ̂d
(i), 0, ..., 0], (15)

µ̂d
(i) = µ

(min)
d + i × (µ

(max)
d − µ

(min)
d )/10, (16)

where i=0, 1, ..., 10 and µ
(max)
d and µ

(min)
d were the maxi-

mum and minimum values of the d-th dimension in the vali-
dation set, respectively. Figure 4 shows the results when dµ=3
and it is easily found that, by manipulating the value of µ, vari-
ous face images can be generated.

From the above, the principal components of IFFs (PC-IFF)
and µ of CVAE (CVAE-µ) can be regarded as face features that
represent facial impressions.

5.2. Extraction of voice features

5.2.1. Experimental conditions

In the second experiment, eigenvoices were extracted through
PCA performed over 127 supervectors of 256 mixture SD-
GMMs. SD-GMMs of a speaker of the JNAS database were
trained by using the 1st to 24th dimensional Mel-cepstrum co-
efficients and their delta features of his speech samples, which
were digitized at 16 kHz and 16 bits. The coefficients were ex-
tracted by using WORLD [28] and SPTK2. In order to examine
how various voice qualities can be generated by changing the
values of eigenvoices, speech samples were synthesized by us-
ing the framework of EVC.

5.2.2. Experimental results

The cumulative contribution ratio was over 50% by using the
first to the 6-th eigenvoices and over 80% by using the first up to
the 33rd eigenvoices. It was confirmed that by manipulating the
values of eigenvoice, various voice qualities can be generated.
Therefore, eigenvoices can be regarded as voice features that
represent vocal impressions.

2http://sp-tk.sourceforge.net/ [Accessed 19 January
2017]
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Figure 4: Various face images generated when dµ=3

Table 1: The mean Mel-cepstrum distortion [dB] over subjects
and faces: The number in parentheses denotes the dimension of
face features.

PC-IFF(3) CVAE-µ(3) CVAE-µ(10)
GMM 1.89 1.88 2.24
pCCA 1.90 1.89 1.96
mPCCA 1.98 1.98 2.12

5.3. Statistical conversion from face to voice

5.3.1. Experimental conditions

In the last experiment, PC-IFF or CVAE-µwas converted statis-
tically to 6-dimensional eigenvoice based on 2-mixture GMM,
pCCA, or 2-mixture mPCCA. The dimension of PC-IFF was
3 and dµ was 3 or 10. The dimension of h of Eq. (6) was
3. Statistical models were trained by using subject-dependent
64 paired data of Section 4. By using the remaining 7 paired
data, comparisons were made between automatically converted
eigenvoices and manually specified eigenvoices. The compar-
isons were based on mean Mel-cepstrum distortion (MCD) per-
formed over 53 speeches generated through EVC. The MCD
was calculated as follows,

MCD [dB] = 10/ ln 10

√√√√2

24∑

d=1

(
c
(s)
d − c

(m)
d

)2

, (17)

where c
(s)
d and c

(m)
d were d-th Mel-cepstrum coefficient based

on statistical conversion and manual selection, respectively.

5.3.2. Experimental results

As shown in Table 1, by comparing MCDs for each kind of face
feature, CVAE-µwhen dµ=3 is slightly better than PC-IFF, and
both of them are better than CVAE-µ when dµ=10. As shown
in Section 5.1, CVAE is better than IFF in that various photo-
graphic face images can be generated. However, since PC-IFF
features are obtained after PCA, the function of each dimen-
sion of PC-IFF can be interpreted. This may make it possible to
examine what face features play more important roles in face-
to-voice conversion. This is one of our future works.

Next, we compare the conversion performance of the three
models. In the case of CVAE-µ with dµ=10, pCCA is bet-
ter than GMM and mPCCA. On the other hand, in the case of
PC-IFF and CVAE-µ with dµ=3, GMM is slightly better than
pCCA, and both of them are better than mPCCA. These results
are considered to be because the size of the collected mappings
is not sufficient to train GMM and mPCCA effectively, espe-
cially in the case of CVAE-µ with dµ=10. However, we ob-
tained the following finding from results of analysis. Although
the same number of mixtures, M , is assumed in mPCCA be-
tween face features and voice features, analytical results show
that the optimal number of mixtures depends on the domain

Figure 5: One mean of pCCA and two means of mPCCA and
two Gaussian distributions estimated by the mPCCA. The top is
for PC-IFF face features and the bottom is for eigenvoice.

of features. For example, as shown in Figure 5, in the case
of mPCCA (M=2), it is observed that, for voice features, one
large distribution seems good enough, but that two large distri-
butions are needed for face features. As future work, we are
interested in introducing domain- or feature-dependent number
of mixtures for mPCCA, which will characterize the relations
between the two spaces more adequately.

6. Conclusion
In this paper, we tested six methods of statistical conversion
from face features to voice features based on their subjective
impressions. As for face features, two different kinds of fea-
tures were used. One was IFF, which represents the layout of
facial parts, and the other was CVAE, which can embed a pho-
tographic face image to a latent feature vector. As for voice
features, eigenvoice was used, which represents speaker char-
acters. To realize statistical conversion, manual face-to-voice
mappings were collected from Japanese adult subjects. Based
on the subjective mappings, PC-IFF or CVAE-µ was converted
statistically to eigenvoice based on GMM, pCCA, or mPCCA.
Results of manual mappings implied that each subject has his
favorite voice and various faces were mapped to that specific
voice. This result supported the finding obtained in [12] about
identity matching where the difficulty in matching a person’s
face to its own voice is dependent on the person. As experimen-
tal results of statistical conversion, it was found that CVAE-µ
with dµ=3 is slightly better than PC-IFF, and it was also sug-
gested that the optimal number of mixtures of face features is
different from that of voice features.

In future works, we will collect a larger number of manual
mappings of face to voice and examine the effect of the size of
data on conversion performance. We should also examine what
face features are important in face-to-voice conversion, and how
the optimal numbers of mixtures of mPCCA are dependent on
the two domains and the features used for those domains.
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