
Far-Field Speech Recognition Using Multivariate Autoregressive Models

Sriram Ganapathy1, Madhumita Harish2

1Learning and Extraction of Acoustic Patterns (LEAP) Lab, Indian Institute of Science, Bangalore.
2 Carnegie Mellon University, Pittsburgh, U.S.A.
sriramg@iisc.ac.in,mharish@andrew.cmu.edu

Abstract
Automatic speech recognition (ASR) in far-field reverberant en-
vironments is challenging even with the state-of-the-art recog-
nition systems. The main issues are artifacts in the signal due
to the long-term reverberation that results in temporal smear-
ing. The autoregressive (AR) modeling approach to speech fea-
ture extraction involves representing the high energy regions of
the signal which are less susceptible to noise. In this paper,
we propose a novel method of speech feature extraction using
multivariate AR modeling (MAR) of temporal envelopes. The
sub-band discrete cosine transform (DCT) coefficients obtained
from multiple speech bands are used in a multivariate linear pre-
diction setting to derive features for speech recognition. For sin-
gle channel far-field speech recognition, the features are derived
using multi-band linear prediction. In the case of multi-channel
far-field speech recognition, we use the multi-channel data in
the MAR framework. We perform several speech recognition
experiments in the REVERB Challenge database for single and
multi-microphone settings. In these experiments, the proposed
feature extraction method provides significant improvements
over baseline methods (average relative improvements of 9.7 %
and 3.9 % in single microphone conditions for clean and multi-
conditions respectively and 6.3 % in multi-microphone condi-
tions). The results with clean training on single microphone
conditions further illustrates the effectiveness of the MAR fea-
tures.
Index Terms: Far-field speech recognition, 3D CNN mod-
eling, Multi-variate Autoregressive (MAR) modeling, Time-
frequency analysis, Single and multi-Channel speech process-
ing.

1. Introduction
The advancement of deep neural networks has established a
benchmark in modeling an Automatic Speech Recognition sys-
tem (ASR). Although its performance has shown to have im-
proved over the decades, degradation due to reverberation is a
notable challenge in the development of a real world applica-
tion of hands free ASR. [1]. For example, Peddinti et al., [2]
reports a 75% rel. degradation in word error rate (WER) when
far-field array microphone signals are used instead of the head-
set microphones in the ASR systems, both during training and
testing. The main issue in reverberant environments is the tem-
poral smearing of the received speech signal.

A conventional solution to the reverberation artifacts is to
employ multi-microphone sensors to record speech signals. A
delay-sum based approach called beamforming is subsequently
employed for multi-channel signal based speech enhancement
[3, 4]. Performance degradation in reverberated conditions can
also be overcome by training on multi conditioned data [5]. It
has been observed that the performance of an ASR system is
substandard even after going through speech enhancement and

the multi-condition training, when compared to the clean test
data (without reverberations). This points to a need to attain
noise robustness either at the signal analysis stage in the front-
end or at the statistical modeling stage. In this paper, the issue
of robustness in feature extraction has been addressed.

The use of a multivariate time series analysis for feature ex-
traction has been explored in this paper [6, 7]. The multivariate
AR (MAR) modeling is an approach where a linear combination
of past vectors have been used to approximate a random time se-
ries vector. The coefficients of prediction are matrices estimated
using a least squares criterion. The MAR modeling technique
has been broadly used for forecasting applications in economet-
rics [8]. In the past, speech enhancement using autoregressive
modeling has been explored for multi-channel dereverberation
[9]. Applications of the MAR model for joint-time frequency
modeling shows a significant promise for noisy speech recog-
nition [10]. In this paper, we use the MAR model for feature
extraction in single and multi-channel speech recognition.

The MAR approach to feature extraction uses the long-term
windows of the signal (2000 ms) which are processed with
a discrete cosine transform (DCT). The DCT coefficients are
windowed in mel-spaced sub-bands. The mel-windowed DCT
components from multi-microphone data are jointly used in the
MAR framework to directly model the multi-microphone data
(without any beamforming). The MAR coefficients here char-
acterize the sub-band temporal envelopes of the multi-channel
speech signal. The MAR modeling allows a representation of
signal peaks in the multi-channel data and exploits the inher-
ent 2-D structure along the time-channel space. Hence, these
representations can be suitable for dealing with reverberation
artifacts in the speech signal. In the case of single-channel
speech recognition, the MAR features are extracted using the
joint time-frequency modeling.

Experiments are performed on the REVERB challenge
dataset using both single and multi-microphone conditions. In
the case of single microphone conditions, the MAR framework
has been used to model the joint time frequency by perform-
ing MAR on multi-band data (similar to previous work in [10]).
We further compare the proposed approach to other noise ro-
bust feature extraction methods as well as the beamforming
approach for multi-channel speech enhancement. In these ex-
periments, the proposed MAR method provides significant im-
provements for the single and multi-microphone conditions. We
also illustrate the benefits of the proposed approach for mis-
matched conditions in the REVERB challenge data using clean
training conditions as well.

The rest of the paper is organized as follows. In Sec. 2, we
describe the MAR model and the estimation method. The ap-
plication of MAR model for speech feature extraction in single
microphone conditions is discussed in Sec. 3 and for multi-
microphone conditions in Sec. 3.2. The speech recognition ex-
periments and results are described in Sec. 4. In Sec. 5, we
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Figure 1: Block schematic of the MAR spectrogram model for
single channel speech.

conclude with a summary of the proposed features.

2. Multivariate Autoregressive Modeling
A multivariate AR model of order p is given by [7],

yq = ν +

p∑

k=1

Akyq−k + uq, (1)

where y is a vector process of a sequential data with index q,
varying from 1, .., Q and of dimension D. ν is the D dimen-
sional mean vector, u is a white noise random process having
covariance Σu and dimension D. The MAR coefficients Ak

areD dimension square matrices characterizing the model. The
generalized least squares estimation (GLS) of the MAR param-
eters has been presented in the next subsection of the paper.

To illustrate the MAR Model described by Eq. 1, we define
a D × Q matrix, Y := [y1, ...,yQ] , a D × (Dp + 1) ma-
trix, B := [ν,A1...,Ap], a D × Q dimension matrix, U :=
[u1, ...,uQ] and a vector, Zt := [1 yTq yTq−1 ... yTq−p+1]T of
dimension (Dp+ 1)× 1. Eq. 1 can thus be re-written as

Y = BZ + U (2)

where Z := [Z0, ...,ZQ−1] with dimension (Dp + 1) × Q .
Here, presample observations y−p+1, ..,y0 are assumed to be
available. Let vec denote a stacking operator which converts an
m×nmatrix to anmn×1 vector by stacking the columns of the
matrix one below the other. Defining u := vec(U) (DQ × 1),
β := vec(B) ((D2p + D) × 1) and y = vec(Y) ((D2p +
D)× 1), we obtain,

y = vec(BZ) + u

= (ZT ⊗ ID)β + u (3)

where the Kronecker product is denoted by ⊗ and ID is a D
dimensional identity matrix. The covariance matrix of u is thus
given by IQ ⊗ Σu. Here, the cost function S(β)[11] is mini-
mized by the GLS estimator. Using matrix operations such as
the inverse of Kronecker product1 and the commutative prop-
erty 2, we get,

S(β) = uT (IQ ⊗Σu)−1u (4)

= βT (ZZT ⊗ Σ−1
u )β − 2βT (Z⊗ Σ−1

u ) + C

where C is a constant, independent of β.

2.1. Model parameter estimation

The parameter estimates of the model can then be obtained by
setting ∂S

∂β
= 0. The estimate β̂ can be written as,

β̂ = ((ZZT )−1Z⊗ IK)y (5)

1If A, B are two matrices, (A⊗B)−1 = A−1 ⊗B−1.
2If A, B, C, D are matrices, (A⊗B)(C⊗D) = AC⊗BD.

The Hessian matrix ∂2S
∂β∂βT = 2(ZZT ⊗ Σ−1

u ) is positive def-
inite which indicates a minima. The above formulation reduces
to the normal equations in a traditional AR model if D = 1.
The estimator in Eq. (5) is consistent and asymptotically nor-
mal [7]. The estimate Σ̂u can be obtained as follows,

Σ̂u =
1

Q

Q∑

q=1

uqu
T
q =

1

Q
Y(IQ − ZT (ZZT )−1Z)YT (6)

2.2. Envelope Estimation

MAR modeling has widely seen applications in forecasting [8].
However, in this paper, we use MAR models to estimate tem-
poral envelopes. For a 1-D time domain AR model, the spectral
envelope of the sequence yq with coefficients Ak = ak is given
by,

ŝy[f ] =
σ2
u

|∑p
k=0 ake

−i2πkf |2 (7)

where sy[f ] is the power spectral density where f is the nor-
malized frequency index. σ2

u is the prediction gain [12]. In
the case of MAR, computation of spectral envelope is more in-
volved. If yq denotes a mean removed time series data (ν = 0)
indexed by q, the following multidimensional z-transform filter
expression can be written for the model described in Eq. 1,

[
ID −

p∑

k=0

Akz
−k]yq = uq (8)

H = ID −
∑p
k=0 Akz

−k estimated at z = e−j2πf . If sy[f ]
denotes the vector power spectral density for the process yq ,
then the MAR estimate of the spectral envelope is given by,

ŝy[f ] = diag
[
H−1Σ̂uH

−1] (9)

In our model estimation, we have also found that the model
covariance matrix Σ̂u captures the significant variations when
there is a mis-match. By setting Σ̂u = I , we can achieve gain
normalization of the temporal envelopes, a property that we will
later use in the model for mis-match train/test conditions.

3. Feature Extraction using MAR
3.1. Single Channel Speech

The one dimensional autoregressive modeling applied to the
data in the time domain yields an all-pole estimate of power
spectrum of the signal [12]. In a dual manner, the autoregres-
sive modeling of discrete cosine transform (DCT) coefficients
of a signal, yields the all-pole estimate of the Hilbert envelope
of the signal [13, 14]. In the latter case, the AR modeling is
applied on the DCT coefficients of each sub-band individually.
In this paper, the DCT coefficients of multiple sub-bands are
modeled using the MAR approach. Thus, the Hilbert envelope
of multiple sub-bands are jointly estimated using Eq. 9.

The block schematic of the proposed approach for feature
extraction in single channel case is shown in Fig. 1. Here,
long input speech segments (2000ms of non-overlapping win-
dows) are transformed using DCT. The full-band DCT signal
is windowed into a set of over-lapping sub-bands using Gaus-
sian shaped windows with center frequencies chosen uniformly
along the mel scale. The DCT sequences of multiple sub-bands
are stacked together to form vector series data yq of Eq. (1).
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Figure 2: Spectrogram of a portion of speech (2.5s) in clean and simulated reverberant conditions for conventional mel processing and
the proposed MAR model.

Figure 3: Block schematic of the MAR spectrogram model for
multi-channel speech.

In this case, q corresponds to the sub-band DCT coefficient in-
dex. The estimation procedure of the MAR model is applied and
model parameters are estimated (Eq. 1. We use a fixed model
order of 160 for the MAR estimation of 2000ms of speech. The
sub-band temporal envelopes are then computed using Eq. 9.

The sub-band MAR envelopes are integrated with a Ham-
ming window over a 25 ms window with a 10 ms shift. The
integration in time of the sub-band envelope yields an estimate
of the short-term power spectrum. This gives an estimate of
the MAR spectrogram of the input speech signal. In Fig.2, we
compare the spectrogram representation from MAR modeling
and the conventional mel spectrogram. As seen here, the MAR
modeling results in a smooth representation which emphasizes
only the high energy regions of the signal. The joint estima-
tion of the envelopes obtained by the two-dimensional spectro-
temporal modeling also allows the model to focus on relatively
high signal-to-noise (SNR) regions of the speech signal as il-
lustrated by the spectrogram representations obtained for the
reverberated signal (simulated reverb condition). The envelope
estimation in the proposed MAR model enhances the changes in
the signal energy while suppressing the constant regions of the
signal. These properties of the MAR model provide robustness
in the representations derived from this approach.

3.2. Multi-Channel Speech

In the case of multi-channel speech, we use the speech data from
all the channels in deriving the MAR model. In this paper, we
use 3 parallel channel recordings form the microphone array.
The MAR feature extraction for multi-channel speech is illus-
trated in Fig. 3. Here, the DCT coefficients of the same sub-
band from all the recording (in the multi-channel setting) are

used jointly in the MAR framework. Thus, q in Eq. 1 corre-
sponds to the channel index. The main difference in the multi-
channel and single channel processing is that the multi-channel
processing used MAR to model sub-band envelopes of multiple
microphone signals for each sub-band whereas the single chan-
nel MAR framework uses multi-band modeling. While it is pos-
sible to model the multi-band and multi-channel signal jointly
in the MAR framework, we have not explored this option for
the current work.

4. Experimental Setup

4.1. Database

The ASR experiments on reverberant speech data are performed
using WSJCAM0 corpus in a single channel scenario, released
as a part of REVERB challenge [15]. This database consists
of 7861 recordings from 92 training speakers, 1488 recordings
from 20 development test (dt) speakers and 2178 recordings
from two sets of 14 evaluation test (et) speakers, with each
speaker providing about 90 utterances. These recordings were
carried out with two sets of microphone- head mounted and a
desk microphone positioned about half meter from the speaker’s
head. The database consists of three subsets: training data set
(Train) - for both clean and multi condition training using sim-
ulated reverb data, a simulated test dataset (Sim) and a natu-
rally reverberant recording of the test dataset (Real). For sin-
gle channel ASR experiments, we use the clean condition and
multi-condition setting and for the multi-channel ASR, we use
3 channels from the array microphone recordings.

The acoustic model is built using Kaldi ASR setup [16]
where an initial HMM-GMM model is trained to obtain the
alignments. A tri-gram language model is used in our ASR ex-
periments. The senone alignments are then used with a Keras
engine [17] to build the deep neural network based acoustic
model. All the models are trained using frame-level cross en-
tropy criterion. For single channel ASR experiments, we use a
deep neural network (DNN) or a convolutional neural network
(CNN) with 2-D convolutions. For multi-channel ASR experi-
ments, we also experiment with the recently proposed CNN-3D
architecture [18].
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Table 1: Word error rate (%) in single channel multi-condition
setting for simulated (S) and naturally reverberant conditions
(R) on development (dt) and evaluation (et) datasets. All the
models use log-mel features.

Model S-dt S-et R-dt R-et Avg.
DNN 12.7 13.6 31.8 37.5 23.9

LSTM 11.1 11.6 28.3 31.2 20.5
CNN2D 11.3 11.4 26.8 29.6 19.8

CNN2D-Dropout 10.2 10.8 25.5 27.7 18.6

Table 2: Word error rate (%) in single channel multi-condition
setting with CNN-2D-Dropout model.

Feat. S-dt S-et R-dt R-et Avg.
Mel 10.2 10.8 25.5 27.7 18.6

PNFBE 9.9 10.7 24.3 29.4 18.6
MAR-3Band 10.1 10.3 24.4 26.7 17.9

4.2. Single Channel Multi Condition Training

The initial experiments reported in Table 1 are performed with
23 dimensional log-mel filterbank energies which are mean and
variance normalized. A context of 21 frames is used as the con-
text for the DNN model or for generating the time-frequency
representation used at the input of the CNN. The DNN model
consists of 4 layers of 1024 dimensions. The LSTM model has
3 layers of 256 units each. The CNN model has 4 convolutional
layers (2 layers of 256 kernels and 2 layers of 128 kernels with
all kernel sizes set to 3×3) and two feed-forward layers of 1024
dimensions. A frequency max-pooling was also applied after
the second and fourth convolutional layers. We also experiment
with the use of dropout in CNN model [19]. A dropout factor
of 0.2 is used in all the layers. As seen from the experiments in
Table 1, the CNN2D models with dropout gives the best perfor-
mance. The rest of experiments reported in this paper use the
CNN architecture.

The next set of ASR experiments reported in Table 2 com-
pares the performance of various feature extraction schemes us-
ing the CNN2D model with dropout. The noise-robust feature
extraction scheme using power normalized filter bank energy
(PNFBE) features [20] (40 dimensional) are compared in these
experiments with the proposed MAR modeling approach (21 di-
mensional). All the features are processed with utterance level
mean and variance normalization. As seen in these experiments,
the proposed MAR approach using a multi-band framework for
processing the signal provides significant improvements com-
pared to other feature extraction methods (average relative im-
provements 3.9 % over the baseline log-mel features). These
improvements can be attributed to the peak modeling property
of the AR estimation as well as the joint multi-band modeling
provided by the MAR framework.

4.3. Multi-Channel Multi-Condition Training

Here, we experiment with two different ways of acoustic mod-
eling in a multi-microphone setting (with 3 parallel microphone
channels). In the first case, the microphone recordings are
beamformed (BF) and the enhanced signal is used for feature
extraction and acoustic modeling. In the second approach, the
features for the 3 channels are extracted separately and a CNN-
3D model is used to jointly model the time-frequency-channel
space [18]. The results are reported in Table 3. In the case of

Table 3: Word error rate (%) in multi-channel multi-condition
setting. Here beamforming is denoted as BF .

Feat+Model S-dt S-et R-dt R-et
BF-Mel-CNN2D 9.7 10.0 24.8 26.4

BF-Mel-CNN2D-Dropout 9.0 9.5 23.8 25.3
Mel-CNN3D 9.8 10.3 26.7 28.4

Mel-CNN3D-Dropout 9.1 9.8 24.6 25.8
MAR-1Ch-CNN2D-Dropout 9.9 10.1 23.4 26.4

MAR-CNN3D-Dropout 10.1 10.3 23.2 27.0
BF-MAR-CNN2D-Dropout 8.7 8.9 22.9 24.3

Table 4: Word error rate (%) in single channel clean-condition
setting with the CNN-2D-Dropout model.

Feat. S-dt S-et R-dt R-et Avg.
Mel 37.7 35.6 79.6 79.8 58.2

PNFBE 39.5 37.9 77.9 79.6 58.7
MAR-3Band 33.9 31.7 70.3 74.0 52.5

log-mel features, the beamforming model approach improves
the performance over the single channel conditions. The model
with dropout training further improves the ASR accuracies.
While the CNN3D model has previously shown improvements
for multi-speaker case [18], the BF based signal enhancement
provided the best ASR results in the REVERB Challenge case
(as there is only a single source (speaker) in these recordings).

For the proposed MAR features, the ASR results are fur-
ther improved over the log-mel features. These results are fur-
ther encouraging as the beamforming already provided signif-
icant benefits by suppressing the reverberation and enhancing
the quality of the signal. In the case of multi-microphone exper-
iments, the MAR features provide 6.3 % relative improvements
over the log-mel baseline.

4.4. Single Channel Clean Condition Training

The performance of same set of features using the CNN2D
model is also compared in a clean training condition (Table 4).
All the features have significant drop in performance owing
to the mis-match in training and test conditions. Even in the
mis-matched conditions, the proposed MAR features provide
significant benefits of far-field speech recognition. In the case
of single-microphone clean conditioned experiments, the MAR
features provide 9.7 % relative improvements over the log-mel
baseline.

5. Summary and Future Work
A novel method for feature extraction of speech using the mul-
tivariate AR modeling of the temporal envelopes has been pro-
posed in this paper. A multivariate linear prediction is per-
formed on the sub-band DCT components from multiple speech
bands for a robust feature extraction in the ASR setup. The
MAR features extracted using the joint time frequency model-
ing deals with the reverberation artifacts by emphasizing on the
speech characteristics which shows a significant improvement
in the performance of the ASR. With several experiments on
matched conditions (single and multi-microphone) and in mis-
matched training conditions, we have shown the effectiveness
of the proposed features. In future, we plan to extend the MAR
framework by deriving multi-band and multi-channel features
jointly.
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