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Abstract

In recent years, the performance of Automatic Speaker Verifica-
tion (ASV) systems has been improved significantly. However,
they are still affected by different kind of spoofing attacks. In
this paper, we propose a method that fused different phase fea-
tures and amplitude features to detect replay attacks. We apply
the mel-scale relative phase feature and source-filter vocal tract
feature in phase domain for replay attacks detection. These two
phase-based features are combined to get complementary infor-
mation. In addition to these phase characteristics, constant Q
cepstral coefficients (CQCCs) are used. The proposed methods
are evaluated using the ASVspoof 2017 challenge database, and
Gaussian mixture model was used as the back-end model. The
proposed approach achieved 55.6% relative error reduction rate
than the conventional magnitude-based feature.
Index Terms: anti-spoofing, replay attacks detection, phase in-
formation, feature combination, CQCCs

1. Introduction
Automatic speaker verification (ASV) is a technique to ver-
ify that speech belongs to a given speaker [1]. In the current
years, many significant advances have been made in the field
of speaker recognition and verification [2, 3, 4]. The security
and reliability of ASVs are the main aspects of technical chal-
lenges. The outside world can deceive the trust of the system by
imitating the characteristics of speech, and most authentication
systems are easily affected. Spoofing attacks and anti-spoofing
attacks have been one of the battlefields in the speech area. At
present, more and more researchers are beginning to pay atten-
tion to the vulnerability of ASV systems [5, 6, 7]. Deceptive
attacks can be separated into four categories: impersonation, re-
play, text-to-speech (TTS) synthesis and speech conversion [8].
In previous studies, the focus of speech detection was mainly on
synthesized speech and converted speech. Countermeasures on
replay tracks have not been researched deeply owing to lack of
publicly available databases and standardized benchmarks. The
ASV Spoofing and Countermeasures (ASVspoof) 2017 pro-
vides a platform that focused on detecting replay attacks and
provides a reference system for replaying attacks detection, a
standard database, and a common evaluation standard whose
purpose is to build a common framework. With the beginning

*Corresponding author

of the challenge, replay attack detection has made significant
progress [9, 10, 11].

Most of the methods proposed in previous studies have fo-
cused on amplitude information, such as Mel-Frequency Cep-
stral Coefficients feature (MFCCs) [12]. MFCCs are widely
used in speech applications, such as automatic speech recogni-
tion (ASR), speaker verification (ASV) and language recogni-
tion [13, 14, 15]. But the Fourier transform used in MFCCs is
not ideal for spoofing detection because the frequency bins are
processed similarly, and it ignores the resolution of different
frequency bins [9]. A new constant Q cepstral coefficient fea-
ture based on the constant Q transform (CQT) was proposed to
detect various kinds of spoofing attacks [1, 16]. The difference
between with MFCCs is that it processed different frequencies
with variable resolution that is higher frequency has higher res-
olution and lower frequency has lower resolution. It is shown in
[5, 8, 17] that CQCCs outperforms many previously reported
features by a significant margin against both known and un-
known attacks.

Phase-based features have shown effective for synthesized
and converted speech detection [12, 18, 19, 20]. The most com-
monly used phase related feature may be the group delay based
feature. In fact, this feature contains phase and amplitude in-
formation during the calculation process, which means that the
detection result may be disturbed. The relative phase can avoid
this problem and it is extracted directly from the Fourier trans-
form of the speech wave [18]. To reduce the phase variation by
cutting positions, the phase of a certain base frequency is kept
constant, and the phases of other frequencies are estimated rel-
ative to this. However, in the related phase studies, filter banks
have not been applied to improve the performance of spoofing
detection. In this paper, we utilize the mel filter bank for filter-
ing, which corresponds to better resolution at low frequencies
and less at high. In addition, for the shortcomings of the tradi-
tional group delay method, this experiment uses phase domain
source-filter separated vocal tract feature [21] to apply to spoof-
ing detection. This method utilizes the group delay method
in the phase-domain to avoid the limitations of the traditional
group delay functionc. And this feature was first used for spoof-
ing detection task. We also explore the role of different phase
information in the replay attacks detection, and combine these
phase features with amplitude feature to achieve the best system
performance.

The remainder of this paper is organized as follows. In
Section 2, baseline system of feature and decision model is
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described. Section 3 describes phase-based feature extraction
methods. The experimental setup and results are shown in Sec-
tion 4. Finally, conclusions are given in Section 5.

2. Baseline system
In this paper, a Gaussian mixture model (GMM) [22, 23] is used
as spoofed speech detector. CQCC is used as baseline feature.

2.1. CQCC feature

Compared with the MFCC feature, the CQCC feature [1] is the
variable resolution of the spectrum and the time-frequency rep-
resentation is very efficient in spoof detection, which is more
suitable for the ASVspoof task. This feature is used as a bench-
mark feature and it has proven to be an effective technology in
the ASVspoof system. Hence, in this study, CQCC is adopted
as the baseline feature.

The CQCC is an amplitude-based feature which combines
Constant Q transform (CQT) and traditional cepstral analysis.
The object is to transform geometric space of frequency bins to
a linear space using performing a linear frequency scale of the
CQT, followed by a uniform resampling and a Discrete Cosine
Transform (DCT). Extraction of CQCC features is illustrated in
below Figure 1.

Figure 1: CQCC feature extraction process.

2.2. GMM-based spoofed speech detector

Score for decision is derived using the difference between the
log-likelihoods of the genuine and spoofed GMMs using the
following equation:

S = log(P (X|θg))− log(P (X|θs)), (1)

where P is the likelihood function, X is the sequence of
feature vectors, θg and θs are parameters for the genuine and
spoofed models, respectively. The decision about whether a
given segment is genuine speech or spoofed speech is built on
score S.

In this work, a variety of features are utilized to complement
each other to improve the robustness. To better combine the
phase information with the amplitude information, we use the
method proposed in [24] that combines the information between
the two systems at the score level to obtain the information gain
and improves the final result of the combined system. Through
the information fusion at the score level, the advantages of both
phase and amplitude features can be emphasized.

For two score combination, we have used linear combina-
tion proposed in [24].

Lcomp = (1− α)L1 + αL2

α =
L1

L1 + L2

(2)

L1 and L2 represent the scores from two independent models.
L1 and L2 denote the averaged L1 and L2 over all training
data respectively. For example, the combination of CQCC and
MGDDC features at the score level, the L1 and L2 denote the
CQCC score and MGDCC score, respectively.

Furthermore, we use the following formula to calculate
score when we use three features to combination.

Lcomp = αL1 + βL2 + (1− α− β)L3

α =
L1

L1 + L2 + L3

, β =
L2

L1 + L2 + L3

(3)

3. Phase-based feature extraction
3.1. Modified group delay cepstral coefficient

Most of the phase-related works in speech processing are based
on the Modified Group Delay Function. The group delay func-
tion (GDF) [25] is defined as the frequency differential of the
phase spectrum, that is,

τX(ω) = − d

dω
arg[X(ω)] = −Im{ d

dω
log(X(ω))}, (4)

where arg[.] and Im{.} denote the unwrapped (continuous)
phase and imaginary part and ω is angular frequency. Phase un-
wrapping is not straightforward but the GDF can be computed
while avoiding this issue by utilizing real and imaginary parts,
The group delay function can also be calculated directly from
the speech signal using

τX(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2 , (5)

where the subscripts R and I denote the real and imaginary
parts of the Fourier transform. X(ω) and Y (ω) are the Fourier
transforms of x(n) and nx(n), respectively. There are many
studies reporting that the modified group delay is better than the
original group delay [26]. The modified group delay function
can be defined as

τ(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

Sc(ω)2β

τm(ω) = (
τ(ω)

|τ(ω)| )(|τ(ω)|)α.
(6)

Where Sc(ω) is the cepstrally smoothed spectrum of S(ω)
and S(ω) is the squared magnitude |X(ω)|2 of the signal x(n).
The modified group delay function is smoothed to avoid explo-
sion. There are two parameters (α, β) that need to be adjusted to
suit different tasks. The cepstral coefficient of the above func-
tion was obtained by taking DCT as in [19]. In the experiments
we set the values to α = 0.9 (0 < α ≤ 1.0) and β = 0.4
(0 < β ≤ 1.0).

3.2. Phase domain source-filter separation based vocal
tract feature

Speech is a mixed-phase signal, as its complex cepstrum is nei-
ther causal nor anti-causal. Therefore, in order to facilitate the
phase information in speech processing, it can be divided into
two parts, minimum-phase (MinPh), XMinPh(ω), all-pass
(AllP ), XAllP (ω).

X(ω) = XMinPh(ω)XAllP (ω)

|X(ω)| = |XMinPh(ω)|
arg[X(ω)] = arg[XMinPh(ω)] + arg[XAllP (ω)],

(7)
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where |X(ω)| and arg[X(ω)] indicate the (short-time) magni-
tude and unwrapped (continuous) phase spectra, respectively.

|X(ω)| = |XV T (ω)||XExc(ω)| = |XMinPh(ω)|

arg[XMinPh(ω)] = − 1

2π
log(|XMinPh(ω)|) ∗ cot(

ω

2
)

(8)

Since vocal tract (XV T (ω)) and excitation (XExc(ω))
components are convolved in the time domain, the magnitude
spectrum (|X(ω)|) is the product of the corresponding magni-
tude spectra. Given |X(ω)| is only linked to the MinPh part.
In Eq.8, by replacing the log|XMinPh(ω)| with log|X(ω)|,
arg[XMinPh(ω)] can be calculated.

Phase characteristics are no longer chaotic and can be un-
derstood as a superposition of two components: the vocal tract
and excitation parts. The same is shown in Eq.9.

arg[XMinPh(ω)] = − 1

2π
log(|XV T (ω)||XExc(ω)|) ∗ cot(

ω

2
)

= arg[XV T (ω)] + arg[XExc(ω)]

(9)

The above-described method of separating and extracting
features by source-filter separation based on the phase domain
and it can extract the vocal tract feature and the excitation parts
information in the speech. In this work, the experiment used the
characteristics of the vocal tract part [21, 27], which had proven
to be a good performance in speech recognition and has not yet
been applied in replay attacks detection. This feature is known
as PBSFVT. The feature extraction method is shown in Figure
2.

Figure 2: Phase-based source-filter decomposition [21].

3.3. Mel-scale relative phase features

The phase changes depending on the clipping position of the
input speech even at the same frequency ω. To overcome this
problem, the phase of a certain base frequency ω is kept con-
stant, and the phases of other frequencies are estimated relative
to this. For example, by setting the base frequency ω to 0, we
obtain:

X ′(ω) = |X(ω)| × ejθ(ω) × ej(−θ(ω)), (10)

whereas for the other frequency ω′ = 2πf ′, the spectrum be-
comes:

X ′(ω′) = |X ′(ω′)| × ejθ(ω′) × ej ω′
ω

(−θ(ω)), (11)

In this way, the phase can be normalized, and the normal-
ized phase information becomes

θ̃(ω′) = θ(ω′) +
ω′

ω
(−θ(ω)). (12)

After that, we use the method proposed in [28] to process
the phase information and change the phase to the coordinates
on the unit circle, θ̃ is converted to {cos θ̃, sin θ̃}. The relative
phase (RP) features were first introduce in [28], and this relative
phase feature is used in [18]. Once the process described in [19]
is complete, we convert the phase information to Mel scale in
this paper. It corresponds to better resolution at low frequencies
and less at high.

4. Experiments
4.1. Data and evaluation metric

Source of the ASVspoof 2017 challenge is the RedDots
database, the genuine recorded data in the RedDots database as
source data for the challenge, and replayed data in the RedDots
database as source of spoof replay recordings.

The challenge data are divided into three subsets: training,
development and evaluation. Each voice in the training set and
the development set has tagged as genuine or spoof. Infor-
mation regarding phrase ID, speaker, recording environment,
recording device and playback device was also available. For
the evaluation subset, only the phrase ID was available. The
sampling rate of data in this dataset is set to 16 kHz and the
sampling precision is 16 bits. Common training set containing
1,508 genuine and 1,508 spoof files was used in our system,
and the following systems were trained with only the common
training set. In this experiment, we use training data to train
the model, utilize the development set to adjust the training pa-
rameters, and finally use the evaluation set to evaluate our pro-
posed method. Table 1 shows the detailed data distribution of
the ASVspoof 2017 challenge.

Table 1: ASV-Spoof 2017 Dataset

Data type Number of speakers Utterances
Genuine Spoofed

Train 10 1508 1508
Development 8 760 950
Evaluation 24 1298 12008

Equal Error Rate (EER) is invoked as the performance mea-
sures in the ASVspoof 2017 challenge, which is also the evalu-
ation metric in our experiments.

4.2. Experimental setup

For CQCC feature, we use default 96 bins-per-octave and 16 as
a number of uniform samples in the first octave. For MGDCC
feature, a total of 36 dimensions (12 MDGCC, 12 ∆MGDCC,
12 ∆∆MGDCC) were calculated from the modified group de-
lay function phase spectrum every 10 ms with a window of 25
ms. Thirty-six dimensional PBSFVT feature (12 PBSFVT, 12
∆PBSFVT, 12 ∆∆PBSFVT) was calculated every 10 ms with
a window of 25 ms. Mel-RP feature was calculated every 5 ms
with a window of 12.5 ms. A spectrum with 128 components
consisting of magnitude and phase was calculated by DFT for
every 256 samples. Then 38 static relative phase features (that
is, 19 cos θ̃ and 19 sin θ̃) were extracted using mel-scale filter.
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The GMM has two 512-component models which are
trained using the EM (Expectation Maximization) algorithm, on
genuine and spoof utterances, respectively.

4.3. Experimental results and discussion

First of all, we conducted experiments using the baseline GMM
classifier using a different individual type of features based on
GMM detector. The detail results are summarized in Table 2.

Table 2: EERs (%) of spoofing detection performance of indi-
vidual features

Feature Development data Evaluation data
CQCC 10.35 29.00
MFCC 13.78 34.39
MGDCC 25.93 40.84
PBSFVT 16.18 26.58
RP 19.86 25.68
Mel-RP 10.36 16.03

From Table 2, compared with baseline CQCC features,
Mel-RP and PBSFVT features achieved 44.7% and 8.6% rela-
tive error reduction rates for evaluation data, respectively. How-
ever, the result of the MGDCC feature in this experiment is
not as good as the expected. This may be due to the fact that
both the amplitude and phase information are included in the
MGDCC feature, disrupting the final performance.

In addition, the PBFSVT feature also avoids the defects of
MGDCC because the processing of this feature is mainly per-
formed in the phase domain. At the same time, the Mel-RP have
been improved compared to the traditional RP features, and the
reason is that mel filter banks for traditional RP features have
better resolution at low frequencies and less at high.

Table 3: EER (%) of score combination system

Feature Development data Evaluation data
CQCC+MGDCC 9.03 30.76
CQCC+PBSFVT 9.48 21.77
CQCC+Mel-RP 5.02 13.88
CQCC+MGDCC+Mel-
RP

9.94 35.17

CQCC+MGDCC+PBSFVT 9.70 22.36
CQCC+PBSFVT+Mel-
RP

5.69 12.88

Next, the score level combinations of different systems
were conducted and the results are shown in Table 3. The
CQCC+Mel-RP and CQCC+PBSFVT achieved relative er-
ror reduction rates of 54.9% and 29.2% compared with
CQCC+MGDCC, respectively, This may be due to the complex
information of the combination of MGDCC and CQCC han-
dling too much for simple GMM. By comparing different exper-
imental results, the CQCC + Mel-RP + PBSFVT combination
system achieved the best performance of 12.88%. The result is
obtained using both phase and amplitude characteristics in var-
ious resolutions. The CQCC+Mel-RP+PBSFVT combination
system selects these phase-based and magnitude-based features
to take advantages of all resolution information.

5. Conclusions
In this paper, we proposed a method to fuse different phase
features and amplitude features to detect replay attacks. It is
the first work to apply the mel filter bank to the relative phase
for improving the performance of spoofing detection and the
first time for application of PBSFVT to replay attack detec-
tion. The experimental results show that the Mel-RP features
and PBSFVT features proposed in this paper can effectively
improve the performance of the system. Individual Mel-RP fea-
ture achieves a relative error reduction rate of 44.7% comparing
with the CQCC feature. The combined system CQCC+Mel-
RP+PBSFVT achieves a relative error reduction rate of 55.6%
comparing with the conventional magnitude-based feature.

In the future we have plan to use deep learning algorithm
such as DNN or CNN which have recently provided a good per-
formance on ASV systems.
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