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Abstract
Phoneme-based multilingual connectionist temporal classifica-
tion (CTC) model is easily extensible to a new language by con-
catenating parameters of the new phonemes to the output layer.
In the present paper, we improve cross-lingual adaptation in the
context of phoneme-based CTC models by using phonologi-
cal information. A universal (IPA) phoneme classifier is first
trained on phonological features generated from a phonologi-
cal attribute detector. When adapting the multilingual CTC to
a new, never seen, language, phonological attributes of the un-
seen phonemes are derived based on phonology and fed into
the phoneme classifier. Posteriors given by the classifier are
used to initialize the parameters of the unseen phonemes when
extending the multilingual CTC output layer to the target lan-
guage. Adaptation experiments show that the proposed initial-
ization approaches further improve the cross-lingual adaptation
on CTC models and yield significant improvements over Deep
Neural Network / Hidden Markov Model (DNN/HMM)-based
adaptation using limited data.
Index Terms: crosslingual adaptation, connectionist temporal
classification (CTC), phonological features, DNN-based speech
recognition

1. Introduction
Fast bootstrapping of new languages remains a challenge in the
ASR community. A common approach for creating models for
low-resourced languages is to transfer the knowledge learned
from other well-resourced languages to the target language.
For instance, the bottleneck approach aims to extract language-
independent phonetic knowledge from a bottleneck layer of a
multilingual model and uses bottleneck features as additional
inputs to train the acoustic model of a target language [1, 2, 3].
Knowledge can also be transferred by replacing the output layer
of a well-trained model and re-training the model to predict
the targets of a low-resourced language [4, 5]. All of these
approaches are based on a conventional DNN/HMM frame-
work [6, 7]. In order to perform well, DNNs model context-
dependent states. However, this creates more challenges for
cross-lingual ASR because of the large increase in context-
dependent labels arising from the phone set mismatch. When
adaptation data is extremely scarce, the performance degrada-
tion is still significant.

Recently, the Connectionist Temporal Classification (CTC)
framework has been successful in ASR [8]. CTC based sys-
tems learn to model context implicitly by the use of a recurrent
neural network (RNN). Even monophone-based CTC systems
can achieve equal or better performance than DNN/HMM hy-
brid systems when a large amount of data is available [9, 10].
A phoneme-based CTC model is fundamentally independent of
the problem of context-dependent state mismatch, and does not
require prior alignments between the input and output, poten-

tially making the cross-lingual adaptation simpler.
Adaptation from an International Phonetic Alphabet (IPA)

phoneme-based multilingual CTC model to a low-resourced
language has been investigated in [11]. By retaining the param-
eters already learned in the multilingual output layer and ex-
tending it to cover the unseen phonemes, the authors show sig-
nificant improvements on limited adaptation data. However, the
parameters connecting to the unseen phonemes are randomly
initialized. The limitations of data-driven approaches appear
when training data is limited. Prior human knowledge can help
alleviate such bottlenecks. We hypothesize that a better initial-
ization that integrates more human expertise can bootstrap the
target network using even less data.

To this end, we start from the IPA universal phoneme-based
multilingual CTC model following [11], which is described in
Section 2 and is used as our multilingual seed model for cross-
lingual adaptation. It has been demonstrated that phonologi-
cal attribute is a common knowledge source that is fundamen-
tal, sharable across all languages and can be properly modelled
[12, 13], thus making it attractive for multilingual ASR. How-
ever in this paper, we propose to incorporate phonological in-
formation to improve the parameter initialization of the unseen
phonemes when extending the CTC output layer. Inspired by
the Automatic Speech Attribute Transcription (ASAT) frame-
work [14], we first train a phonological attribute detector that
detects a collection of phonological attribute cues, and then in-
tegrate such cues to make predictions of the same IPA-based
multilingual phoneme targets. When a new language arrives,
the corresponding phonological attributes of unseen phonemes
can be derived from phonological rules. The posteriors pro-
duced by the multilingual phoneme classifier indicate how close
an unseen phoneme is to those already seen phonemes and can
be used for parameter initialization in the CTC model. This
proposed approach is presented in Section 3. Experimental re-
sults and analysis are provided in Section 4. Finally, Section 5
concludes the paper.

2. Universal Phoneme-based Multilingual
CTC Model

Very recently, building end-to-end multilingual speech recog-
nition systems using a universal grapheme set has been inves-
tigated [15, 16]. However, modelling graphemes includes im-
plicit modelling of spelling, which requires a large amount of
data. Moreover, graphemes can differ a lot from language to
language. Languages that have nothing in common in terms of
graphemes also share some common phonemes. Moreover, a
universal phoneme-based model is easily extensible to unseen
phonemes when adapted to a new language.

With this motivation, and following [11, 17], we propose a
multilingual architecture that uses a universal output label set
consisting of the union of all phonemes from the multiple lan-
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guages. In this study, the monolingual phones are considered
to be the same and merged if they share the same symbol in
the IPA table. The network is trained to model the universal
phoneme targets using the CTC loss function [8] on data from
multiple languages.

In many of our preliminary experiments with CTC, con-
sistent overfitting was observed on limited data. Dropout has
been well established for feedforward networks [18]. More re-
cently, various approaches of dropout on feedforward and recur-
rent connections were explored in the context of CTC [19]. In
this work, the same dropout approach, as described in [11, 19],
is applied in multilingual training and cross-lingual adaptation
to minimize overfitting on limited data.

3. Cross-lingual Adaptation
3.1. Previous Work

The basic procedure of cross-lingual model adaptation on CTC
models is simple. As first proposed for DNN models [4], the
output layer is removed and a new randomly initialized softmax
layer, corresponding to the target language phone set, is added
on top of the hidden layers. Usually, the hidden layers are fixed
and only the softmax layer will be re-estimated using training
data from the target language. If enough data is available, fur-
ther tuning of the entire network can be considered. Both have
been shown effective in [11, 20].

One major advantage of the universal phoneme-based mul-
tilingual CTC model over the multilingual DNN is that mono-
phone modeling gets around the problem of mismatch of
context-dependent states. When a new target language arrives,
it therefore becomes straightforward to extend the existing mul-
tilingual model to extra phonemes, rather than discarding all the
information already learned in multilingual training. The out-
put layer can be extended by adding connections to the unseen
monophones of the target language. Those parameters connect-
ing to the unseen phones are randomly initialized and trained
from scratch. The others can be quickly adapted from the mul-
tilingual model with little adaptation data. This approach has
been proved to be effective on limited adaptation data in our
previous work [11], as shown in Figure 1.

When data becomes more scarce, human expertise can be
incorporated to boost the model. Phonological studies suggest
that each sound unit of a language (phoneme) can be decom-
posed into a set of phonological features based on the articula-
tors used to produce the sound; the phonological attributes are
sharable across all languages. In this paper, we focus on bet-
ter initialization of the new parameters by using a phonological
attribute-based phoneme classifier.

3.2. Phonological Feature-based Phoneme classifier

As shown in Figure 2, the proposed phoneme classifier consists
of two main blocks: 1) a data-driven phonological attribute de-
tector, and 2) a frame-based phoneme classifier using phono-
logical features generated from the previous detector.

The phonological attribute detector is a multitask-learning
DNN for joint estimation of phonological features. Estimat-
ing different phonological features from the same acoustic sig-
nal can be considered as a set of interrelated tasks; it has
been shown effective for articulatory feature estimation in [21].
To estimate the DNN parameters, multilingual training data
is used. The labels for every phonological class are gener-
ated from the phoneme alignment according to the phonological
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Figure 1: WERs (%) of different adaptation approaches. Adapt-
output denotes only updating the output layer during adapta-
tion. Adpt-ALL is updating the whole network. Extend-Adpt-
ALL represents updating the whole network after extending the
output layer to the new language. (Figure from [11]).
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Figure 2: Architecture of the multilingual phoneme classifier
using phonological features.

mapping1.
Once the phonological detector is trained, the phonological

posteriors gathered from the detectors can be viewed as an indi-
cation that a specific phone has been articulated. In this work,
the log posteriors of every phonological class are concatenated
together and fed into the phoneme classifier, which is realized
using a DNN. The outputs of the DNN are the monophone tar-
gets of the same IPA-based phoneme set used in multilingual
CTC training. For each unseen phoneme in a target language,
the phoneme classifier will be utilized to find the most probable
mappings in the multilingual phoneme set.

3.3. Parameter Initialization Using Multilingual Phoneme
Posterior

When extending the multilingual CTC network to a new lan-
guage, a better initialization of the parameters connecting to
those unseen phonemes can be estimated using the phonolog-
ical attribute-based phoneme classifier described above. For an
unseen phoneme s, the corresponding phonological attributes
can be obtained from prior knowledge. Inputting the phonolog-
ical attributes to the phoneme classifier produces multilingual
phoneme posterior P(s) = [p1(s), p2(s), ..., pN (s)], where N
denotes the size of the multilingual phoneme set. The poste-
rior P(s) can be interpreted as how close the new phoneme is
to those seen multilingual phonemes. In the extended output
layer, the weights ws and the bias bs of the unseen phoneme
s can be initialized either by taking a weighted average of the

1http://publications.idiap.ch/downloads/
reports/2018/Tong_Idiap-Com-02-2018.pdf
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Table 1: Statistics of the dataset of each language used in this
work: the amounts of speech data are in hours.

Language Dataset Train Dev Test

Multilingual
Data

EN WSJ 81h 1.1h 0.7h
FR BREF/GP 120h 10.3h 8.8h
GE BCN 136h 1.1h 5.7h

Total Amount 337h
Target Language PO GP 21h 1.6h 1.8h

parameters of all the seen multilingual phonemes,

ws =
N∑

i=1

pi(s)wi, bs =
N∑

i=1

pi(s)bi (1)

where wi and bi represent the weight and the bias of the ith

phoneme respectively, or by copying the weight and bias of the
multilingual phoneme that has the maximum posterior.

ws = wm, bs = bm,m = argmax
i

(pi(s)) (2)

4. Experiments
4.1. Experimental Database

The multilingual seed model was trained on English (EN),
French (FR), and German (GE). The English data was obtained
from the Wall Street Journal (WSJ) corpus [22]. Data prepara-
tion gave us 81 hours of transcribed speech. The French data
was extracted from the BREF [23] and GlobalPhone (GP) cor-
pora [24], which consist of 120 hours of data. From the German
Broadcast News (BCN) corpus [25], we used 136 hours of data
for training. In total, 337 hours of multilingual data was used
for multilingual CTC training. All the training data is quite
clean read speech from similar acoustic conditions. In cross-
lingual adaptation experiments, GlobalPhone Portuguese (PO)
was considered as the target low-resourced language, which has
only 21 hours data. The detailed statistics for each of the lan-
guages is shown in Table 1. The development sets were used to
tune the hyper parameters for training.

4.2. Setup

We used 40-dimensional log-mel filterbank coefficients as
acoustic features together with their first and second-order
derivatives, derived from 25 ms frames with a 10 ms frame
shift. The features were normalized via mean subtraction and
variance normalization on a speaker basis. All the monolin-
gual phones were mapped to IPA symbols and we merged the
phonemes from EN, FR and GE to create the universal phone
set for multilingual training. The multilingual CTC model has
4 layers of Bidirectional Long Short-Term Memory (BLSTM),
with 320 cells in each layer and direction. All the weights in
the models were randomly initialized and were trained using
stochastic gradient descent with momentum. A learning rate of
0.00004 was used and early stopping on the validation set was
applied to select the best model. The dropout rate was set to 0.2.

Once the multilingual model was trained, it was used as
seed model for cross-lingual adaptation to Portuguese. A sim-
ilar training strategy was applied. For decoding, a weighted
finite-state transducer (WFST) decoding graph was built using
a language-specific lexicon and language model. The trigram
language models that we used are publicly available2. All the

2http://www.csl.uni-bremen.de/GlobalPhone/
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Figure 3: WERs (%) of different approaches in cross-lingual
adaptation. The WERs of monolingual CTC models on less than
5 hours data are above 50% and exceed the graph region.

DNN/HMMs compared in this work have 6 hidden layers, each
consisting of 1024 units. Thus, it contains slightly more pa-
rameters (8.8 vs 8.5 million) than the CTC models. All CTC
models were trained using the EESEN implementation [26] and
DNN/HMM systems were built using the Kaldi [27].

4.3. Results

4.3.1. Updating Whole Network vs. Updating Output Layer

In previous work [11], we showed that updating the whole net-
work performs better than only updating the output layer and
extending the output layer further improves the performance,
as described in Figure 1. However, in the present experiment,
we are interested in even smaller data sizes. We hypothesize
that updating only the output layer might achieve better perfor-
mance on more limited data. Therefore, we revisited the com-
parison between updating the whole network and updating only
the output layer after extending the multilingual output layer to
Portuguese and also did the comparison on less data (15 min,
30 min). The parameters connecting to unseen phonemes were
randomly initialized. Since dropout has been proved to be effec-
tive in CTC-based cross-lingual adaptation, it was also applied
in this work.

As shown in Figure 3, updating the whole network (EXT-
ALL-RAND) consistently outperforms only updating the out-
put layer (EXT-SM) even on 15-30 minutes adaptation data. It
further confirms the previous observation. Therefore, all the
parameters in the networks were updated with dropout during
cross-lingual adaptation in the remaining experiments.

4.3.2. Phonological Attribute Detector and Phoneme Classifier

The same multilingual data, EN, FR and GE was used to train
the phonological attribute detector and the phoneme classifier.
The phonological attribute detector is a 4 layer DNN, with 1024
hidden units in each layer. The same log-mel filterbank co-
efficients but with 5 frames context on each side were used
as input features. The detector produces greater than 92.2%
frame-level attribute detection accuracies for all phonological
attributes used in this work and an overall 96.2% accuracy. Be-
cause of the limited space, we do not list the detection accuracy
for all the attributes.

The input of the phoneme classifier is the concatenated log
phonological posteriors with 5 frames context on each side. The
DNN has 6 layers, each consisting of 1024 units. The output
targets are multilingual IPA monophones based on EN, FR and
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Figure 4: PERs (%) with respect to overlapped phonemes
(SEEN) and new phonemes (UNSEEN) on PO development set.
The adaptation was performed on 30 minutes data.

Table 2: WERs (%) of cross-lingual adaptation with different
initialization. WS denotes weighted summation of the multi-
lingual weights in initialization and MAX represents taking the
weights of the most probable mapped phonemes.

15m 30m 1h 5h 10h 15h 21h
EXT-ALL-RAND 36.9 32.0 28.9 23.5 22.3 21.6 18.7

EXT-ALL-WS 33.7 29.6 27.7 23.5 22.0 21.2 18.5
EXT-ALL-MAX 34.3 29.7 27.9 23.5 22.2 21.4 18.9

GE, as described above. The test sets from the 3 languages
were merged together to test the phoneme classification accu-
racy. The overall accuracy is 86.4%, which means it is a reliable
phoneme predictor using phonological information.

4.3.3. Posterior-based Parameter Initialization

There are 19 phonemes in Portuguese that never appear in the
experimental multilingual IPA phoneme set. Phonological at-
tributes can be derived for each of the unseen phonemes based
on prior knowledge. Phoneme posteriors were obtained by in-
putting the phonological attributes. Both parameter initializa-
tion approaches were tested.

As shown in Table 2, both posterior-based initialization
approaches achieve better performance with less than 3 hours
adaptation data. The improvement becomes smaller and smaller
with the increase of the adaptation data. As an example, we an-
alyzed the phoneme error rate (PER) with respect to overlapped
phonemes and new, unseen, phonemes separately on the devel-
opment set during CTC training. As plotted in Figure 4. it
shows that training from posterior-based initialization keeps the
same performance on seen phonemes and yields much better
PER on unseen phonemes. When adaptation data is limited, the
model initialized using phonological information can quickly
catch up on new phonemes.

The two initialization approaches perform almost the same.
The phoneme posterior given by the phoneme classifier for each
unseen phoneme is quite high, as listed in Table 3. This explains
why there is little difference.

4.3.4. Compare CTC-based and DNN/HMM-based Adaptation

We also compared our proposed CTC-based adaptation with
DNN/HMM-based adaptation approaches. In the DNN/HMM-
based adaptation, the multilingual DNN trained on the same
multilingual data was used as the seed model. We then re-
placed the multilingual output layer with Portuguese targets.

Table 3: The most probable mappings of the 19 unseen Por-
tuguese phonemes. The numbers in parentheses are the corre-
sponding posteriors. Phonemes are represented in X-SAMPA.

a” 6 ∼ 6 ∼ ” d j e” e ∼ ” i”
a(0.64) 6(0.96) 6(0.96) d(0.98) e(0.88) e ∼(0.95) i(0.96)
i ∼ i ∼ ” L o” o ∼ ” r t j

i(0.93) i(0.93) j(0.93) o(0.88) o ∼(0.99) h(0.66) t(0.98)
u” u ∼ u ∼ ” l = l =∼

u(0.97) u(0.96) u(0.96) l(0.95) n(0.7)
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Figure 5: Comparison between CTC-based and DNN/HMM-
based cross-lingual adaptation in WER(%). DNN-Adpt-SM de-
notes only updating the output layer. DNN-Adpt-ALL represents
updating the whole network.

The Portuguese context-dependent states and alignments were
obtained from GMM/HMM systems trained on the correspond-
ing amount of adaptation data. The adaptation was performed
by either updating the whole network or only updating the out-
put layer. Dropout was not applied for DNN since performance
degradation was observed with dropout in our experiments.

It is clear from Figure 5 that the proposed CTC-based cross-
lingual adaptations significantly outperform the DNN/HMM-
based models on limited adaptation data (less than 3 hours).
CTC-based models retain all the information learned in mul-
tilingual training. by contrast, DNN/HMM-based adaptation
only keeps the knowledge in hidden layers. This difference
makes CTC-based models highly competitive when only lim-
ited data is available.

5. Conclusions
It was demonstrated that updating the whole network outper-
forms only updating the output layer in CTC-based cross-
lingual adaptation. When data is extremely limited, leverag-
ing human knowledge and phonological information to initial-
ize the model parameters can make the model converge faster
and better. The proposed initialization approach was shown to
yield better performance than conventional DNN/HMM-based
cross-lingual adaptation on limited data, potentially making the
CTC model a competitive alternative in fast language adaptation
of an ASR system.
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