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Abstract
Parkinson’s disease is a neurodegenerative disorder charac-

terized by a variety of motor and non-motor symptoms. Partic-
ularly, several speech impairments appear in the initial stages of
the disease, which affect aspects related to respiration and the
movement of muscles and limbs in the vocal tract. Most of the
studies in the literature aim to assess only one specific task from
the patients, such as the classification of patients vs. healthy
speakers, or the assessment of the neurological state of the pa-
tients. This study proposes a multitask learning approach based
on convolutional neural networks to assess at the same time sev-
eral speech deficits of the patients. A total of eleven speech
aspects are considered, including difficulties of the patients to
move articulators such as lips, palate, tongue, and larynx. Ac-
cording to the results, the proposed approach improves the gen-
eralization of the convolutional network, producing more repre-
sentative feature maps to assess the different speech symptoms
of the patients. The multitask learning scheme improves in of up
to 4% the average accuracy relative to single networks trained
to assess each individual speech aspect.
Index Terms: Parkinson’s disease, Dysarthria assessment,
Multitask learning, Articulation analysis

1. Introduction
Parkinson’s disease (PD) is a neurological disorder character-
ized by the progressive loss of dopaminergic neurons in the mid-
brain, producing several motor and non-motor impairments [1].
Motor symptoms include bradykinesia, rigidity, resting tremor,
micrographia, and different speech impairments, which are cur-
rently evaluated according to the third section of the move-
ment disorder society-unified Parkinson’s disease rating scale
(MDS-UPDRS-III) [2]. Only one of the 33 items of the MDS-
UPDRS-III scale is related to speech; however, the majority of
PD patients develop several speech disorders [3]. Those dis-
orders are considered as an early sign of further motor impair-
ments [4]. The most common symptoms in the speech of PD
patients include reduced loudness, monopitch, monoloudness,
reduced stress, breathy, hoarse voice quality, and imprecise ar-
ticulation. These impairments are grouped together and called
hypokinetic dysarthria [3]. One of the first observed impair-
ments was the imprecise production of stop consonants such as
/p/, /t/, /k/, /b/, /d/, and /g/ [3]. A reduction of the articulatory
precision in stop consonants was also observed in [5]. From
the technical point of view, the speech impairments developed
by PD patients have been described computing features related
to four dimensions: phonation, articulation, prosody, and in-
telligibility [4, 6, 7]. Although the already known success of
these classical feature extraction approaches, in the recent years

deep learning methods have been successfully implemented to
assess specific phenomena in speech, including the detection
and monitoring of PD [8, 9]. For instance, in [8], the win-
ners of the “2015 computational paralinguistic challenge (Com-
ParE)” [10] evaluated the neurological state of PD patients ac-
cording to the MDS-UPDRS-III score using Gaussian processes
and deep neural networks (DNN). The authors automatically
grouped the speech tasks per speaker and reported a Spear-
man’s correlation (ρ) of 0.65. In [11] the authors proposed a
deep learning model to assess the severity of dysarthria. The
model considered an intermediate interpretable hidden layer to
model four perceptual dimensions: nasality, vocal quality, artic-
ulatory precision, and prosody. The interpretable output of the
DNN was highly correlated (ρ =0.82) with a subjective eval-
uation provided by speech and language pathologists. In [12]
the authors modeled the voice quality spectrum in PD using
a deep learning approach to compute phonological posteriors
from the speech signal. Those posteriors were used to assess
the dysarthria level of 50 PD patients and 50 healthy control
(HC) speakers. The authors correlated (ρ=0.56) the predicted
scores and the subjective evaluation performed by speech thera-
pists. In [9] the authors modeled articulation impairments of PD
patients with time-frequency representations and convolutional
neural networks (CNNs) with the aim to assess the difficulties
of the patients to start and stop the vibration of the vocal folds.
The authors classified PD patients and HC speakers considering
speech recordings in three languages: Spanish, German, and
Czech, and reported accuracies from 70% to 89%, depending
on the language. For Spanish, accuracies of 85.5% are obtained,
using the same data from this study.

Most of the studies consider only one specific task to eval-
uate the speech of PD patients e.g., to classify PD patients vs.
HC subjects [4, 9], to evaluate the neurological state of PD pa-
tients [8], or to assess the general speech impairments of the pa-
tients [11, 12]. The multitask learning approach offers the pos-
sibility to evaluate several deficits simultaneously. This study
proposes a multitask learning strategy based on CNNs to as-
sess the severity of different speech aspects that are impaired
in PD patients, including respiration capability, larynx move-
ment capacity, lips movement capacity, monotonicity, among
others. The assessment of these aspects is performed accord-
ing to a modified version of the Frenchay dysarthia assessment
scale (m-FDA), which was introduced recently [6, 13]. We also
consider standard tasks such as the classification of PD vs. HC
subjects, the assessment of the neurological state of the patients
according to the MDS-UPDRS-III score, and the assessment of
the speech item of the MDS-UPDRS-III score. A total of eleven
tasks are considered in this study with the multitask learning ap-
proach. We train the CNNs for the multitask learning based on
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the articulatory model presented in [9], which is used to model
the difficulties of the patients to start/stop the vibration of the
vocal folds based on the transition between voiced and unvoiced
segments. The multitask learning strategy aims to improve the
generalization of feature maps learned by the CNN. The results
suggest that it is possible to assess specific speech symptoms
of the patients following the introduced strategy. The results
also indicate that to train CNNs with multiple tasks may provide
more representative feature maps than specific CNNs trained to
classify each task separately. The multitask learning approach
also provide an improvement relative to the reported previously
with the same data and the same features [9].

2. Methods
2.1. Transition modeling

A transition in speech occurs when the speaker starts or stops
the vocal fold vibration. We detect the transition from un-
voiced to voiced segments (onset) and from voiced to unvoiced
(offset), which are segmented according to the presence of the
fundamental frequency F 0 using Praat. Once the borders are
detected, 80 ms of the signal are taken to the left and to the
right of each border, forming “chunks” of signals with 160 ms
length [14]. Each chunk is transformed into a time frequency
representation using the short-time Fourier transform. The
transformed signal is used as input to the deep learning archi-
tecture for the multitask learning scheme.

2.2. Multitask learning

We aim to evaluate the speech deficits of PD patients that appear
due to dysarthria. The multitask learning architecture is based
on a CNN where convolutional and pooling layers are shared
across the tasks. Multitask learning improves generalization in
the training process of a deep learning model [15]. When part
of the CNN is shared across different tasks, the feature maps
are more constrained, yielding better generalization. We con-
sider the same approach than the proposed in [9], i.e., modeling
the onset and offset transitions. This approach might be sub-
optimal for some of the tasks assessed in this study, specially
those not related to articulation impairments; however, we be-
lieve that including all tasks in the learning process may help
to improve the results for other tasks, which are related to the
articulation deficits of the patients.

Figure 1 shows the CNN architecture used in this study. The
CNN is formed with four convolutional and two pooling layers
that are shared for all tasks. After the last pooling layer, an in-
dividual hidden fully connected layer is used per task, followed
by the output layer to take the final decision using a sigmoid ac-
tivation function. The loss function in a multitask strategy is a
linear combination of the individual loss functions for each task,
following Equation 1 when two tasks are considered. The term
γ is a weight hyper-parameter, L1(Θ) is the loss for the first
task, and L2(Θ) is the loss function for the second task. When
γ = 0, the CNN only learns the first task, and when γ = 1, the
CNN is trained to predict only the second task. The loss func-
tion can be generalized using Equation 2 when more than two
tasks are considered, subject to the condition

∑
i γi = 1.

L(Θ) = γL1(Θ) + (1− γ)L2(Θ) (1)

L(Θ) =
∑

i

γiLi(Θ) (2)

The CNNs are trained using the stochastic gradient descent
algorithm. The cross–entropy between the training labels y and
the model predictions ŷ is used as loss function Li. The root
mean square propagation is considered to adapt the learning rate
in each iteration [16]. Additionally, rectifier linear (ReLU) ac-
tivation functions are used in the convolutional layers, dropout
is included in the training stage to avoid over-fitting, and batch
normalization is used to accelerate the training process.

2.3. Validation

The experiments are validated with the following strategy: 80%
of the data are used for training, 10% of the data are used to op-
timize the hyper-parameters, i.e., development set, and the re-
maining 10% are used for test. The process is repeated 10 times
with different partitions of the test set to guarantee that every
participant is tested once. The hyper-parameter tuning is per-
formed with a Bayesian optimization approach [17]. The tuning
process is based on an optimization problem, where we find the
hyper-parameters that maximize the performance of the model
on the development set. The range of the hyper-parameters to
be optimized is shown in Table 1. A batch-size of 128 samples
and a total of 100 epochs are considered.

Table 1: Range of the hyper-parameters used to train the CNNs.

Hyper-parameter Values

Filter size convolutional layers {3, 5, 7}
Depth of convolutional layers {4, 8, 16, 32, 64}
Hidden units in fully connected layers {16, 32, 64, 128}
Learning rate {0.0001, 0.0005, 0.001}
Probability of dropout {0.1, 0.2 · · · 0.9}
Weight factor for multitask γi {0.1, 0.2 · · · 0.9}

3. Data
3.1. m-FDA scale

In order to help language therapists and patients to assess the
communication abilities of PD patients, we developed a mod-
ified version of the FDA [18] scale (m-FDA), which can be
administered based on speech recordings. This scale eval-
uates several aspects of speech: respiration, lips movement,
palate/velum movement, larynx, tongue, monotonicity, and in-
telligibility. The m-FDA scale contains 13 items and each of
them ranges from 0 (completely healthy) to 4 (very impaired),
thus the total score of the scale ranges from 0 to 52 [6, 12]. The
scale is in the process of clinical validation. The labeling pro-
cess of the m-FDA was performed by three phoniatricians, who
agree on the evaluations of the first ten speakers (randomly cho-
sen). Afterwards, the experts evaluated the remaining record-
ings independently. The inter-rater reliability among the phoni-
atricians was 0.75, which was computed calculating the average
Spearman’s correlation between all possible pairs of raters [13].
Table 2 summarizes the speech aspects and items included in
the evaluation. For the multitask learning approach we aim to
predict these individual aspects of the m-FDA score. Each as-
pect corresponds to a task in the multitask learning scheme.

3.2. Participants

We consider the PC-GITA database [19]. The data contain
speech utterances from 50 PD and 50 HC Colombian native
speakers balanced in age and gender. The participants pro-
nounced several utterances including the rapid repetition of the
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Figure 1: Multitask learning architecture based on CNNs to assess the dysarthria impairments in PD patients

Table 2: List of aspects and items included in the m-FDA eval-
uations

Aspect m-FDA items

Respiration 1) Duration of respiration
2) Respiratory capacity.

Lips 3) Strength of closing the lips.
4) General capacity to control the lips.

Palate/Velum 5) Nasal escape.
6) Velar movement.

Laryngeal
7) Phonatory capacity in vowels.
8) Phonatory capacity in continuous speech.
9) Effort to produce speech.

Tongue 10) Velocity to move the tongue in /pa-ta-ka/.
11) Velocity to move the tongue in /ta/.

Intelligibility 12) General intelligibility.

Monotonicity 13) Monotonicity and intonation.

syllables /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, /ka/, isolated
sentences, a read text, and a monologue.Additional information
from the participants is shown in Table 3. In addition, the dis-
tribution of the total m-FDA and the MDS-UPDRS-III scales is
shown in Figure 2 for the participants of this study.

Table 3: Information of the participants from this study

PD patients HC subjects
male female male female

Number of subjects 25 25 25 25
Age (µ± σ) 61.3±11.4 60.7±7.3 60.5±11.6 61.4±7.0
Range of age 33-81 49-75 31-86 49-76
Duration of the disease (µ± σ) 8.7±5.8 12.6±11.6 - -
MDS-UDRS-III (µ± σ) 37.8±22.1 37.6±14.1 - -
MDS-UDRS-III speech (µ± σ) 1.4±0.9 1.3±0.7 - -
Total m-FDA (µ± σ) 29.8±8.6 28.2±9.0 7.6±9.2 5.1±7.3
m-FDA Respiration (µ± σ) 5.3±8.5 4.8±2.0 1.1±1.5 0.5±1.0
m-FDA Lips (µ± σ) 4.0±1.9 3.0±1.7 0.6±0.9 0.5±1.4
m-FDA Palate (µ± σ) 5.0±1.8 5.0±1.8 1.5±1.9 1.2±1.8
m-FDA Larynx (µ± σ) 7.0±2.8 6.0±2.7 1.5±2.3 0.8±1.5
m-FDA Montonicity (µ± σ) 2.0±0.8 2.0±0.9 0.5±0.8 0.3±0.5
m-FDA Tongue (µ± σ) 5.0±1.8 5.0±2.0 2.0±2.5 1.5±2.4
m-FDA Intelligibilty (µ± σ) 2.0±1.0 1.0±0.7 0.4±0.5 0.3±0.7

4. Experiments and Results
The first experiment consists of training a multitask learning ap-
proach considering eleven tasks to evaluate specific speech im-
pairments of the patients (see Table 4). We grouped the speakers
into three or four classes per task according to the severity of the
symptoms per task. The number of classes was determined to
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Figure 2: m-FDA score for the PD patients and HC subjects
(left), MDS-UPDRS-III scores for the PD patients (right)

guarantee balanced groups in the tasks.

Table 4: Description of the Tasks considered for the multitask
learning approach

Task Description N. classes

Task 1. PD. vs. HC 2
Task 2. Total MDS-UPDRS-III 4
Task 3. speech item MDS-UPDRS-III 4
Task 4. Total m-FDA 4
Task 5. m-FDA Respiration aspect 4
Task 6. m-FDA Lips movement aspect 4
Task 7. m-FDA Palate movement aspect 4
Task 8. m-FDA Larynx movement aspect 4
Task 9. m-FDA monotonicity aspect 3

Task 10. m-FDA Tongue aspect 4
Task 11. m-FDA Intelligibility aspect 3

Multitask CNNs are trained with information of the onset
and offset transitions, and the results are compared to those ob-
tained training single CNNs per task. The results are shown in
Table 5. Average results show an improvement in the accuracy
when the multitask learning is considered (up to 4% for offset).

Higher results are obtained with the multitask learning for
some of the individual tasks, specially in offset. Note the im-
provement for the PD vs. HC task (UAR from 79% to 89%), for
the m-FDA tongue assessment (UAR from 40.7% to 53.8%),
and for the m-FDA larynx evaluation (UAR from 34.9% to
42.6%). The tasks related to the articulation capabilities e.g., m-
FDA lips, larynx, and tongue are those that provide the largest
improvements in the multitask scheme, which is explained due
to the proposed model is more related to assess the articulation
capabilities of the patients. The results for some tasks, e.g.,
m-FDA monotonicity, respiration, and intelligibility could be
improved considering a more specific model to assess such as-
pects, which may not be related to the ransition modeling.

The second experiment consists of modeling two tasks re-
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Table 5: Results obtained for a multitask learning approach to classify eleven tasks related to speech impairments of PD patients. ACC:
Accuracy (%), UAR: Unweighted average recall (%). The bold UARs correpond to the best result obtained per task, for onset and offset

Task N. Multitask onset Single task onset Multitask offset Single task offset
classes ACC. UAR ACC. UAR ACC. UAR ACC. UAR

PD vs HC 2 85.0±10.8 85.0 86.0±2.7 86.0 89.0±7.7 89.0 79.0±6.7 79.0
Total MDS-UPDRS-III 4 55.4±9.4 55.2 51.2±8.1 41.0 55.5±11.4 38.8 52.0±10.5 41.5
MDS-UPDRS-speech 4 57.8±11.8 51.7 50.4±10.6 38.3 56.8±14.4 47.0 54.2±9.1 33.6
Total m-FDA 4 45.2±6.7 43.3 46.8±7.8 43.8 44.3±8.4 40.3 43.0±3.8 42.9
m-FDA respiration 4 40.7±4.2 44.7 42.8±1.1 41.2 40.8±15.2 37.6 44.3±11.9 42.4
m-FDA lips 4 54.3±6.3 51.4 49.3±4.2 49.0 43.8±3.3 31.1 41.7±7.7 33.3
m-FDA palate 4 43.6±2.4 37.6 41.4±5.3 33.6 39.8±14.2 31.1 39.7±5.8 34.5
m-FDA larynx 4 46.2±8.5 43.2 44.5±5.7 44.4 43.4±6.6 42.6 35.9±10.6 34.9
m-FDA monotonicity 3 49.6±10.1 49.7 50.1±11.5 59.6 50.6±3.2 50.3 44.4±9.8 32.8
m-FDA tongue 4 43.9±4.2 43.1 48.8±9.9 42.6 54.3±6.9 53.8 39.5±4.3 40.7
m-FDA intelligibility 3 68.4±6.5 57.8 70.0±8.6 67.5 69.5±6.3 68.2 69.5±6.3 67.4
Average 53.6 51.1 52.9 49.8 53.5 48.2 49.4 43.9

lated to classification and regression: (1) the classification of PD
vs. HC subjects, and (2) a regression task to predict the total m-
FDA score. Figure 3 shows the result of the multitask learning
when the value of the hyper-parameter γ in the loss function
(see Equation 1) ranges from 0.1 to 0.9. Figure includes the
accuracy for the classification task (black curve) and the Spear-
man’s correlation ρ for the regression task (gray curve). Both
metrics are computed on the development set to optimize the
hyper-parameter γ. The results for both tasks follow a similar
trend when γ ranges from 0.1 to 0.5. Then, the accuracy for the
classification task improves while the correlation for the regres-
sion task start to decrease, which is expected because the global
loss function gives more weight to the classification task when
γ > 0.5. The results are compared to those obtained with the
single learning (see Table 6). The results for the multitask learn-
ing are always higher than those obtained when single CNNs
are trained for each task. There is also a smaller reduction in
the results obtained for the development and test sets when we
consider the multitask learning. This fact confirms the better
generalization provided by the proposed scheme.
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Figure 3: Results on the development set when the loss function
of the CNN include the classification of PD vs. HC subjects
(Task 1) and the prediction of the total m-FDA score (Task 2),
depending on the parameter of the loss function γ.

5. Conclusions
A multitask learning scheme is proposed in this study to as-
sess the severity of different speech impairments that appear

Table 6: Comparison between multitask learning and single
learning for the classification of PD vs. HC subject and the
prediction of the m-FDA score. Dev.: results for the develop-
ment set, Test: results for the test set.

Task Metric Multitask Single task
Dev. Test γ Dev Test γ

PD vs. HC ACC. 92.0 80.0 0.8 89.0 74.0 1
Total m-FDA ρ 0.79 0.58 0.5 0.71 0.54 0

in PD patients. A deep learning approach based on CNNs is
considered for the multitask learning. The input to the CNNs
are time-frequency representations obtained from transitions
between voiced and unvoiced segments. The evaluated tasks
correspond to sub-scores of a full scale designed to assess the
dysarthria deficits of the patients.

The multitask learning approach improves the generaliza-
tion of the CNN, producing more representative feature maps
to assess the different speech symptoms of PD patients. The
results indicate that it is more suitable to train a CNN in a mul-
titasks learning scheme rather than to train individual CNNs to
learn tasks for each deficit of the PD patients. The most rep-
resentative tasks in the multitask learning where those related
to the articulation dimension of the speech, including those to
assess the movement of the lips, tongue and larynx. This fact
confirms the convenience of using information from the onset
and offset transitions to model the articulatory capability in the
speech of PD patients. An additional improvement in the re-
sults might be obtained if only those tasks related to the artic-
ulation capabilities are used in the multi-task learning frame-
work. Other models might be considered in further experiments
to assess and improve the results in the other tasks, which are
not related to the articulation impairments such as respiration,
monotonicity, and intelligibility.
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