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Abstract
In general, reconstruction of a speech signal from the spectro-
gram is non-unique because of the unavailability of the phase
spectrum. Considering zero phase would result in a minimum-
phase reconstruction. This limitation is overcome by computing
the recently introduced phase-encoded spectrogram. In this ap-
proach, one modifies each frame of a speech signal to possess
the causal, delta-dominant (CDD) property prior to comput-
ing the spectrogram. In an earlier publication, we showed that
finite-length CDD sequences can be retrieved exactly from their
magnitude spectra using a cepstrum technique. Although exact-
ness is guaranteed in principle, practical implementations result
in a limited, but high, reconstruction accuracy. In this paper, we
focus on increasing the reconstruction accuracy. We formulate
the reconstruction problem within an optimization framework
and deploy a recently proposed iterative, alternating direction
method of multipliers (ADMM) algorithm called autocorrela-
tion retrieval–Kolmogorov factorization (CoRK). Experimental
validations show that the CoRK algorithm results in a recon-
struction accurate up to machine precision. We also show that
both CoRK and cepstrum techniques are robust and invariant to
the choice of the window duration, the amount of overlap be-
tween consecutive speech frames, the strength of the delta used
to impart the CDD property, and the presence of noise.
Index Terms: Phase-encoded spectrogram, causal delta-
dominant sequence, autocorrelation retrieval and Kolmogorov
factorization (CoRK), cepstrum.

1. Introduction
The spectrogram is a widely used representation tool for a mul-
titude of speech processing tasks such as synthesis, analysis,
quality assessment, recognition, enhancement, etc. In general,
a spectrogram is phase-blind. An attempt to reconstruct the
speech signal from its spectrogram gives rise to an infinite num-
ber of solutions as each combination of the spectrogram with a
chosen phase spectrum results in a different speech signal. Also,
speech signals, in general, do not fall in the class of minimum-
phase signals. Several experiments in the past have shown that
over short durations (about 20 to 30 ms), the magnitude spectro-
gram is more important than the phase as far as speech percep-
tion is concerned [1–3]. However, several recent studies have
shown the increasing importance of phase spectrum towards
speech perception and various speech applications [4–8].

The problem of reconstructing a speech signal from its
magnitude spectrum is essentially the problem of retrieval of
the phase spectrum from the spectrogram. Hence, the problem
directly falls within the realm of phase retrieval.

1.1. Related Work

The uncertainty in decoding the speech signal from its spectro-
gram is resolved by resorting to a differently constructed spec-
trogram called the phase-encoded spectrogram, proposed by
Seelamantula [9]. Each windowed frame of a speech signal is
converted into a causal delta-dominant (CDD) sequence, which
has been shown to be minimum-phase. The spectrogram thus
obtained could be used to reconstruct the speech signal, which
establishes that phase-encoding is possible. Soni et al. [10] pro-
posed an alternative method to obtain a phase-encoded spectro-
gram based on the symmetry property of the Fourier transform
of the even and odd signal, which was shown to be identical in
concept with [9] under some conditions. They also showed ex-
act signal reconstruction for their proposed encoding scheme.
Before formally stating the problem addressed in this paper, we
review important related phase-retrieval techniques.

A classical result in phase retrieval is the magnitude spec-
trum characterization of minimum-phase sequences and the as-
sociated Hilbert transform relation between the log-magnitude
and phase spectra [11]. Both iterative [12] and non-iterative
[13–15] techniques have been developed, which result in exact
phase retrieval for minimum-phase signals. Early methods for
solving this problem include the error-reduction algorithms due
to Gerchberg and Saxton [16] and Fienup [17], and numerous
variants thereof. These algorithms rely on an alternating mini-
mization strategy—essentially, one alternates between the mea-
surement domain and the signal domain applying appropriate
constraints in respective domains.

The phase retrieval problem has been extensively re-
searched in the signal processing community [18]. In partic-
ular, Shenoy et al. [19] identified a class of signals for which
exact phase retrieval is possible. The new class of signals
called causal delta-dominant (CDD) signals is a generalization,
but reduces to the well-known class of minimum-phase signals
when the signal length is finite. The developments were carried
out in the continuous domain in principal shift-invariant spaces
spanned by a generator kernel. Subsequently, Huang et al. [20]
showed that the phase retrieval problem can be solved using
Kolmogorov’s spectral factorization.

Recently, phase retrieval has received a lot of attention
from the compressed sensing (CS) community. An early CS
phase retrieval algorithm is the compressive phase retrieval
(CPR) algorithm by Moravec et al. [21]. Subsequently, nu-
merous techniques have been developed based on the spar-
sity criterion. In general, the sparsity-driven phase retrieval
algorithms reconstruct the signal up to a global phase factor
[22–24]. A sparse counterpart of the classical Fienup algo-
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rithm was reported by Mukherjee and Seelamantula [25]. Other
approaches to phase retrieval employ convex relaxation, where
phase retrieval is reformulated as a rank-minimization problem
[26–28], semidefinite-programming-based techniques [29, 30],
and non-convex formulations based on a suitable initialization
and gradient-descent updates [31, 32].

1.2. This Paper

We formulate the problem of recovering a speech signal from
its phase-encoded spectrogram in an optimization framework,
where one is required to solve multiple 1-D phase retrieval prob-
lems. We employ an iterative alternating direction method of
multipliers (ADMM)-based technique, which is different from
the techniques proposed earlier [9,10] to solve the problem. We
show that the task of recovering the speech signal falls within
the framework considered in [20], which is based on autocor-
relation retrieval and Kolmogorov factorization (CoRK), which
can be effectively deployed to solve the problem under consid-
eration. In Section 2, we give an overview of the construction
of the phase-encoded spectrograms and formulate the speech
recovery problem within the framework of phase retrieval. We
provide an overview of the CoRK algorithm [20] for the re-
trieval of CDD sequences. Apart from CDD-based phase en-
coding, other variants of the phase encoding schemes are also
considered. In Section 3, we show results on real speech data.
We demonstrate that the CoRK algorithm converges relatively
fast and is effective in recovering the speech signal with better
signal-to-reconstruction-noise ratio (SRNR) compared with the
cepstrum technique originally proposed in [9]. The perceptual
evaluation of speech quality (PESQ) scores for both methods
were found to be comparable. We also examine the effect of
window duration, overlap ratio, and the strength of the Kro-
necker impulse (which is added to impart the CDD property to
a sequence) on the performance of the recovery algorithm.

2. Phase-Encoding and Reconstruction
2.1. Phase-Encoding in Speech Spectrograms

Consider a K-length speech signal vector s = {sn}Kn=1 and
an N -length window function w = [w1 w2 · · · wN ], where
N < K. The frames {yi}Pi=1 obtained by windowing the
speech signal are given by

y1 = w ◦ [s1 s2 . . . sN ],

y2 = w ◦ [s(N+1−l) s(N+2−l) . . . s(2N−l)],

...
yP = w ◦ [s((P−1)N+1−l) s((P−1)N+2−l) . . . s(PN−l)],

(1)

where l denotes the number of overlapping samples between
successive frames and ◦ denotes the Hadamard product. To ob-
tain a phase-encoded spectrogram, it is first required to convert
each frame yi into a CDD sequence [9]. In order to make the ex-
position self contained, we next review the definition of a CDD
sequence and its minimum-phase property.

Definition 1. A sequence {yn}n∈Z is said to be causal and delta
dominant (CDD) if yn = 0, n < 0 and y0 >

∑

n≥1

|yn|.

Lemma 1 (Shenoy et al. [19]). A finite-length CDD sequence
is also a minimum-phase sequence .

Each frame yi is converted into a CDD sequence by appending
an αi at the beginning of a frame as

ȳi = [αi yi]
T, (2)

where αi = β
N∑

n=1

∣∣∣wns((i−1)N+n−l)

∣∣∣ and β > 1. The M -

length discrete Fourier transform (DFT) withM ≥ 2(N+1) of
each frame ȳi is given by FM ȳi, where FM is the first (N+1)
columns of the M -point DFT matrix. The ith column of the
phase-encoded spectrogram is given by |FM ȳi|2, where | · |2 is
computed elementwise.

2.2. Formulation of the Cost Function

To reconstruct the speech signal s given its phase-encoded spec-
trogram, it is first necessary to recover each (N + 1)-length
CDD frame ȳi from |FM ȳi|2, which is equivalent to recover-
ing a sequence from its Fourier magnitude spectrum. This is
essentially the problem of phase retrieval of a minimum-phase
signal, because a finite-length CDD sequence is also minimum
phase [19]. Having retrieved the CDD frame, we recover yi by
removing the αi term. The original speech signal is then recov-
ered by appropriately accounting for the windowing operation
and performing overlap-add between consecutive frames.

Formally, we seek an estimate of ȳi from the measure-
ments

bi = |FM ȳi|2 + ci, (3)

where ci is a noise vector. The following least-squares cost
function is considered:

minimize
ȳi∈RN+1

∥∥∥bi − |FM ȳi|2
∥∥∥

2

. (4)

In order to obtain an estimate of ȳi from (4), we deploy the
ADMM technique proposed by Huang et al. [20] based on
CoRK, which fits in perfectly for the signal model at hand. The
CoRK algorithm is a two-step process, wherein one obtains the
correlation sequence corresponding to ȳi in the first step, and in
the second, one retrieves the minimum-phase sequence ȳi us-
ing Kolmogorov factorization. Next, we present an outline of
the CoRK algorithm.

2.3. CoRK Algorithm for Reconstruction

2.3.1. Estimation of the Autocorrelation Sequence

Let the autocorrelation sequence of the ith column ȳi be

r̃ = [r−N . . . r−1 r0 r1 . . . rN ]T, (5)

where

rk =

min(N+k,N)∑

n=max(k,0)

ȳi[n]ȳi[n− k]∗,

k = −N, . . . ,−1, 0, 1, . . . , N.

The autocorrelation sequence r̃ is different for different ȳis. For
the sake of notational brevity, we omit the subscript i in r̃i and
denote it as r̃. Using the conjugate-symmetry property of the
autocorrelation rk = r∗−k, the redundancy in (5) could be sup-
pressed.

Considering the one-sided autocorrelation r =
[r0 r1 . . . rN ]T, Huang et al. [20] proposed a convex for-
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mulation as follows:

minimize
r∈RN+1

∥∥∥bi −R{FM Ĩr}
∥∥∥

2

subject to R{FLĨr} ≥ 0,

(6)

where R{·} gives the real part of its argument, Ĩ =
diag[1 2 2 . . . 2], and FL is the matrix formed by the first
(N + 1) columns of the L-point DFT matrix.

The correlation sequence r is retrieved by solving the opti-
mization problem in (6) using the ADMM [20], whose update
steps are given as

r← 1

2

(
1

M
FH

Mbi +
1

L
FH

L(z− u)

)
,

z← max
(
0,R{FLĨr}+ u

)
,

u← u +R{FLĨr} − z,

(7)

where z ∈ RL and u ∈ RL are the auxiliary variable and the
Lagrange multiplier in the ADMM, respectively. To begin with,
the initializations z = 0L×1 and u = 0L×1 are used in the
ADMM iterations.

2.3.2. Estimation of the Minimum-Phase Signal

Since ȳis are finite-length CDD sequences, logarithms of their
Z-transforms are unilateral and hence, real and imaginary parts
of logarithm of the Z-transforms form Hilbert transform pairs.
Exploiting this property, Kolmogorov proposed a method for
recovering the minimum-phase signal ȳi that generates the cor-
relation r. The outline of the algorithm is given below.

• Real part of logarithm of Z-transform of ȳi:
γ = 1

2
lnR{FLĨr}.

• Compute the Hilbert transform (approximated by DFT):
φ = FLγ,

ϕn =





0, n = 0, L/2,

−jφn, n = 1, 2, . . . , L/2− 1,

jφn, n = L/2 + 1, . . . , L− 1.

• Imaginary part of logarithm of Z-transform of ȳi:
η = 1

L
FH

Lϕ.

• Minimum-phase sequence: ˆ̄yi = 1
L
FH

Lexp(γ − jη),

where the first (N + 1) elements of ˆ̄yi constitute the estimate
of ȳi. A large value of L is required to obtain a higher accuracy
and is chosen to be the smallest power of 2 greater than 32(N+
1).

2.4. Other Encoding Schemes

In order to obtain a phase-encoded spectrogram, each frame yi

was converted into a CDD sequence by prefixing an appropriate
Kronecker impulse at the beginning of the frame as shown in
(2). Alternatively, one could also append an impulse at the end
of a frame as

ȳi = [yi αi]
T, (8)

which can be shown to be a maximum-phase signal. This model
also allows for perfect signal recovery. This model does not
require any modification in the CoRK algorithm except that the
first (N + 1) elements of ˆ̄yi are reversed to get an estimate of
ȳi. In yet another variation, the Kronecker impulse could also
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Figure 1: Original and reconstructed speech signals and their
corresponding spectrograms. The spectrograms are computed
using a Hamming window of duration 20 ms with 50% overlap
and β = 1.1. The reconstruction is accurate up to machine
precision—the computed SRNR turned out to be 280 dB.

be included with zeros inserted in between as

ȳi = [αi 0 . . . 0 yi]
T

or ȳi = [yi 0 . . . 0 αi]
T,

(9)

with the number of zeros being arbitrary. The resulting aug-
mented frame can still be uniquely identified from its corre-
sponding column of the phase-encoded spectrogram. We have
observed that all the results that will be presented in Section
3 hold equally well for these alternative encoding schemes as
well.

3. Experiments and Results
We present results on real speech data from the TIMIT database
[33]. For all the experiments, a speech signal with analysis win-
dow (Hamming) of 20 ms with 50% overlap between consecu-
tive frames is considered to compute its spectrogram with phase
encoding (β = 1.1) as explained in Section 2.1. For experi-
ments involving noise, additive white Gaussian noise with zero
mean is considered. Each frame is separately reconstructed us-
ing 50 iterations of the CoRK algorithm described in Section
2.3. The ground-truth signal, the reconstructed signal, and their
spectrograms for a clean speech segment are shown in Figure 1.
The SRNR is computed as the ratio of the reconstructed signal
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Figure 2: SRNR of the CoRK algorithm as a function of the
number of iterations.
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Figure 3: A comparison of the reconstruction performance of
the CoRK and cepstrum techniques using Hamming window as
a function of the window duration and the fraction of overlap
between consecutive frames.

energy to the energy in the reconstruction error (which is the
difference between the ground-truth and the reconstructed sig-
nal), expressed as a logarithm. The spectrograms are shown to
the same dynamic range of 120 dB in both figures. We observe
from the figure that the reconstruction is accurate up to machine
precision. The SRNRs achieved for a clean speech signal with
the iterations of the CoRK algorithm are shown in Figure 2.
This shows that the CoRK algorithm can achieve SRNRs up to
280 dB, which are higher than that achieved by the cepstrum
method (SRNR of 20 dB) [9].

1. Effect of window size and overlap ratio: We repeated
the experiment for a clean speech signal by varying the window
duration and the overlap between successive frames. Figure 3
shows that the SRNR remains almost the same irrespective of
the window duration and the overlap, with the CoRK algorithm
having a higher SRNR.

2. Effect of noise: Figure 4 shows the effect of input SNR
on the SRNR for both CoRK and the cepstrum methods. For
each input SNR, the SRNRs are averaged over 50 noise realiza-
tions. At lower input SNR, both the methods show similar per-
formance, whereas at higher input SNR, the CoRK algorithm
shows superior reconstruction with SRNR matching up to the
input SNR.

3. PESQ evaluation: We performed the experiment of re-
covering the speech signal from its phase-encoded spectrogram
for the 330 speech signals taken from the TIMIT database. The
average PESQ scores of the CoRK and cepstrum methods are
found to be comparable and are presented in Table 1.

4. Effect of β: Figure 5 shows that the SRNR for the cep-
strum method gradually increases and remains constant after
β = 20. For the CoRK algorithm, it is found that the SRNR
remains as high as 250 dB even when β is varied over a wide
range: 1.1 to 50. Even when β is only marginally greater than
1, the CoRK algorithm has a high recovery SRNR.
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Figure 4: Reconstruction performance of the CoRK and cep-
strum techniques at different input SNR levels.

10 20 30 40 50
VALUE OF 

0

50

100

150

200

250

300

350

SR
N

R
 (d

B
)

CoRK ALGORITHM
CEPSTRUM METHOD

Figure 5: Effect of the CDD conversion parameter β on the
reconstruction performance.

Table 1: PESQ scores for the TIMIT database using CoRK and
cepstrum reconstructions for different input SNR levels.

Input SNR Cepstrum CoRK
(dB) method algorithm

clean speech 4.4557 4.500
10 2.2839 2.2843
15 2.6508 2.6517
20 3.0063 3.0076
25 3.3499 3.3514
30 3.6896 3.6922
40 4.2763 4.2840
50 4.4431 4.4712
60 4.4549 4.4951

4. Conclusions
We considered the problem of reconstruction of speech from
its phase-encoded magnitude spectrum, which turns out to be
a phase retrieval problem. It is in turn equivalent to the recon-
struction of a signal from its autocorrelation. We employed the
property that finite-length CDD sequences can be retrieved ex-
actly from their magnitude spectrum. We deployed a recently
developed autocorrelation retrieval algorithm (CoRK), which
fits in perfectly for the signal model at hand as it fulfills all the
prerequisites for the CoRK algorithm to function accurately. We
carried out validations on real speech signals and showed high-
quality reconstruction with the SRNR as high as 280 dB. We
also demonstrated that the performance of the CoRK algorithm
is robust and invariant to parameters such as window duration,
overlap between consecutive frames, the strength of the Kro-
necker impulse for the CDD-encoding, and other types of phase
encoding considered in this paper. The proposed method oper-
ates on a frame-by-frame basis and can therefore handle nonsta-
tionary noise as well. Subjective assessment and comparison of
the reconstruction techniques is a topic for further investigation.
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