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Abstract
The widespread deployment of automatic speech recognition
(ASR) system in consumer centric applications such as voice
interaction and voice search demands the need for noise ro-
bustness in such systems. One approach to this problem is to
achieve the desired robustness in speech representations used
in the ASR. Motivated from studies on robust human speech
recognition, we analyse the unsupervised data-driven temporal
modulation filter learning for robust feature extraction. In this
paper, we compare various unsupervised models for data driven
filter learning like convolutional autoencoder (CAE), genera-
tive adversarial network (GAN) and convolutional restricted
Boltzmann machine (CRBM). The unsupervised models are de-
signed to learn a set of filters from long temporal trajectories of
speech sub-band energy. The filters learnt from these models
are used for modulation filtering of the input spectrogram be-
fore the ASR training. The ASR experiments are performed on
Wall Street Journal (WSJ) Aurora-4 database with clean and
multi condition training setup. The experimental results ob-
tained from the modulation filtered representations shows con-
siderable robustness to noise, channel distortions and reverber-
ant conditions compared to other feature extraction methods.
Among the three approaches compared in this paper, the GAN
approach provides the most consistent improvements in ASR
accuracy in different training scenarios.
Index Terms: Unsupervised learning, data-driven modulation
filtering, generative adversarial network, convolutional autoen-
coder, robust speech recognition.

1. Introduction
The robustness of speech recognition systems to noise and re-
verberations continues to be a challenging task inspite of recent
advances in its performance. On the other hand, robustness to
many of these environmental artifacts is remarkable in the hu-
man auditory system. This may be primarily attributed to the
spectro-temporal filtering performed by cortical neurons in hu-
man auditory system [1, 2, 3].

Several works in the past have incorporated the knowledge
of spectro-temporal modulation filtering for ASR. These ap-
proaches define a series of the spectral modulation (scale), tem-
poral modulation (rate), and spectro-temporal modulation filter-
ing operations on the speech spectrogram. For the ASR applica-
tion, the use of temporal modulations such as RASTA filtering
[4], TRAPS [5] and HATS [6] have been well studied. The
Gabor filtering approach attempts to filter the spectro-temporal
modulations jointly [7, 8]. An approach to separable spectro-
temporal Gabor filter bank features is proposed in [9]. The tem-
poral modulation filtering using the linear discriminant analysis
(LDA) is a supervised data driven approach [10]. Recently, we
have also analysed unsupervised rate-scale filtering using a con-
volutional restricted Boltzmann machine (CRBM) [11].

This work analyses and compares various unsupervised
data-driven modulation filtering approaches. The framework of
unsupervised learning can be divided into distribution learning,
representation learning or clustering methods. An autoencoder
(AE) is a neural network which aims at representation learn-
ing at the hidden layers by mapping the input to the output us-
ing mean square error cost [12]. A convolutional autoencoder
(CAE) incorporates convolutional layers in an AE [13, 14]. In
this work, we explore the use of CAE for temporal modula-
tion filter learning. A second approach for representation learn-
ing using conditional generative adversarial network (cGAN)
attempts to modify the CAE approach with an additional adver-
sarial cost function [15]. Here, a second network is trained in
parallel to access and give feedback to CAE about how good its
input to output mapping is, by analysing the input and generated
outputs as pair. We explore the use of cGAN for modulation fil-
ter learning in this work.

We also use a distribution learning method for unsupervised
modeling with the convolutional restricted Boltzmann machine
(CRBM). The CRBM learns a binary hidden layer by maxi-
mizing likelihood of Boltzmann distribution [16, 17]. All the
three models provide 1-D temporal modulation filter learning
schemes which can be used in ASR. The kernel of the first con-
volutional layer of these models are interpreted as modulation
filter, that captures modulations derived from large amount of
unsupervised speech spectrogram data. After learning a filter,
the projection of the input spectrogram on the learnt filter is re-
moved and the residual spectrogram is then used in the same
model framework for learning subsequent filters. In this ap-
proach, we do not apply any prior knowledge of the perceptual
modulation filtering studies in auditory processing and allow the
data to learn the temporal modulation content present in it.

The ASR experiments are performed on the Wall street
Journal (WSJ) Aurora-4 database using a deep neural network
(DNN) acoustic model. The results from the experiments indi-
cate that the features derived from the learnt filters provide sig-
nificant improvements over other noise robust front-ends. We
also compare the ASR performance of the three filter learning
models with respect to the derived filtered features. Further, we
investigate the performance of the filtered features in reverber-
ant conditions and in a semi-supervised setting where availabil-
ity of labeled data is limited.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the data driven models for learning temporal modula-
tion filters, followed by multiple filter learning criteria. Sec. 3
describes the ASR experiments with the various front-ends fol-
lowed by the results. We conclude with a summary in Sec. 4.

2. Modulation filter learning
This section describes three generative models used to capture
the temporal modulation characteristics from spectrogram data.
All the models use temporal trajectories of 1.5 s length derived
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Figure 1: Block diagram of temporal modulation filter learning
using CAE from spectrograms.

from speech spectrograms (25 ms frame length with shift of 10
ms containing 80 mel-bands).

2.1. Convolutional Autoencoder (CAE)

Autoencoder (AE) is a neural network that can convert high-
dimensional data to low-dimensional codes using encoder, and
a decoder block to reconstruct the data back [12]. The encoder
performs the deterministic mapping f(θ) from a n-dimensional
input vector x into a hidden (encoded) representation y as:

fθ(x) = y = s(Wx+ b) (1)

with parameters θ = {W,b}, where W is a weight matrix,
b is a bias vector and s is the nonlinearity. The resulting en-
coded representation y is then mapped back (decoded) to a re-
constructed d-dimensional vector z in the input space as:

gθ′(y) = z = s(W′y + b′) (2)

with θ′ = {W′,b′}. Here, z is interpreted in probabilistic
terms as the parameters of a distribution p(X|Z = z) that
may generate x with high probability. This requires the min-
imization of reconstruction error with respect to loss L(x, z) =
− logp(x|z). For real-valued x, this leads to

L(x, z) ≈ ||x− z||2. (3)

While fully connected layers learn to reconstruct and identify
the features of each signal as a whole, convolutional neural net-
works (CNNs) learn the mapping to the targets using feature
maps locally [18, 13]. The CNNs require supervised training
data and typically operate on smaller contextual windows (11
frames). A Convolutional autoencoder (CAE) replaces the fully
connected layer with the convolutional layer that is able to learn
local patterns by shared weights of connections [13, 14]. In
our work, CAE is used to capture the temporal modulations of
the speech spectrogram data. The architecture of CAE used
is shown in Fig. 1. In order to analyse the effect of filtering,
only one convolutional layer in encoder (Conv) and one convo-
lutional layer in decoder (deConv) is used. The number of ker-
nels in first Conv layer and last deConv layer is also restricted to
one. The kernel (filter) to be learnt is marked wR in the Fig. 1.
The other layers are fully connected (FC) layers. The network
is trained to reduce the mean square error (MSE) of the tempo-
ral trajectories till the performance saturates. To learn multiple
non-overlapping filters (corresponding to different modulation
characteristics), a sequential filter learning criteria is followed
as explained in Section 2.4 [11].

2.2. Generative Adversarial Network (GAN)

In our work, CAE is also trained in an adversarial manner called
as generative adversarial network (GAN). The GANs are unsu-
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Figure 2: Block diagram of temporal modulation filter learning
using GAN - training G in an adversarial framework.

pervised generative models that learn to produce realistic sam-
ples of input data via an adversarial learning. It consists of
two models (usually neural networks) that are trained simul-
taneously: a generator G that captures the data distribution, and
a discriminator D that estimates the probability that a sample
came from the training data rather than G [15]. The training
procedure for G is to maximize the probability of D making a
mistake. The generatorG(n; θG) is learned by mapping noise n
to data space x, whereG is a differentiable function represented
by a multilayer perceptron with parameters θG.

The discriminator D(x; θD) is a second network that out-
puts a scalar D(x) representing the probability that x is a true
data point and not a model generated sample. We train D to
maximize the probability of assigning the correct label to both
training examples and samples from G. We simultaneously
train G to minimize log(1 − D(G(n))). In other words, D
and G play the following two-player minimax game with value
function V (G,D):

min
G

max
D

V (G,D) = Ex[logD(x)]+En[log(1−D(G(n)))].

In contrast, conditional GANs (cGAN) [19] learn a mapping
from observed sample x and random noise vector n, to z,
G : {x,n} → z. In particular, the D observes both real and
generated samples as a pair, with the task of detecting whether
it is real pair or a fake pair. The objective of a cGAN can be
expressed as:

min
G

max
D

V (D,G) = Ex,z[logD(x, z)]

+ Ex,n[log(1−D(x, G(x,n)))].

This paper uses cGAN to learn modulation characteristics of
temporal spectrogram trajectories with aim of reconstructing
z = x, i.e. identity mapping with G. The block diagram for fil-
ter learning with GAN is shown in Fig. 2. The CAE described
in previous section is used as G with the same architecture and
D is a classifier with two classes as real and fake pair. The D
observes the pair of generated trajectory (z) and the actual tra-
jectory (x) as fake pair, while the pair of actual trajectory (x
and x) as the real pair. The network is trained to minimize the
cross-entropy (CE) loss of D and the MSE loss of G, and the
learnt kernel wR of G is interpreted as the modulation filter.

2.3. Convolutional Restricted Boltzmann Machine

Another generative model that tries to learn the input data distri-
bution by maximizing the data likelihood is the restricted Boltz-
mann machine (RBM) [20]. A RBM is a two-layer, undirected
graphical model with a set of binary hidden units h (as out-
put layer), a set of (binary or real-valued) visible units v (as
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Figure 3: 1-D temporal modulation (rate) filters learnt from (a)
clean WSJ mel spectrogram (b) multi condition WSJ mel spec-
trogram with residual approach.

input layer), and symmetric connections between these two lay-
ers represented by a weight matrix W. The energy function of
the Gaussian RBM is given as:

E(v,h, θ) = −
∑

i,j

viWijhj −
∑

i

vi
2 −

∑

j

cjhj (4)

where i and j are indices that iterate over visible and hidden
units, respectively, model parameters are θ = (W,b, c), with
b and c being the bias at visible and hidden layer, respectively.
We use the contrastive divergence (CD) learning algorithm for
RBM training [16] using gradient ascent based optimization
procedure. With regard to visible-hidden weights, the one-step
CD (Gibbs sampler) followed by weight update is given as:

4WijJ(W,b, c;v) =< vihj >data − < vihj >model,

W′ = W + η(4WJ), (5)

where J is the log likelihood defined as the exponential of nega-
tive of E1, < . > denotes the expectation under the distribution
specified by the subscript, vi and hj are the ith and jth elements
of visible and hidden layer, respectively, W′ is the updated W
matrix, and η is the learning rate.

A convolutional operation can be added to RBM by weight
sharing, reconstructing and identifying the features of the sig-
nal locally [17, 21, 22]. In this work, the temporal trajectories
of mel spectrogram are given as input to CRBM. The details of
filter learning using CRBM is discussed in [11].

2.4. Multiple filter learning

For learning multiple filters that are less redundant [23], we use
the following approach. After an initial filter is learnt (R1), we
remove the contribution of learnt rate component (R1) from the
original spectrogram by subtracting the original spectrogram
from the rate filtered spectrogram. This residual is fed back
to generative model for learning next filter (R2). This method,
similar to matching pursuit (MP) algorithm [24], allows us to
learn irredundant set of filters. Hence, the learnt temporal fil-
ters serve as a dictionary to decompose the input data (temporal
trajectories of sub-band energy from spectrogram in our case).
We begin with random initialization of weights and allow the
different unsupervised models to learn modulation characteris-
tics from data. The normalized magnitude response of the filters
learnt from the three filter learning schemes discussed in Sec 2
is shown in Figure 3 in clean and multi condition training setup.

In our analysis, we find that the first filter learnt from the

Table 1: Comparison of WER (%) in Aurora-4 database for
each filter of corresponding model.

Model R1 R2 R3
CRBM 27.7 23.0 23.1
CAE 27.4 20.7 21.9
GAN 20.3 20.7 22.9

input mel spectrogram is invariably a low-pass in CAE and
CRBM, while the first filter from GAN model has a bandpass
characteristic in clean condition (Figure 3 (a) and 3 (b)). As
seen here, deriving the filters using MP style algorithm provides
irredundant filters. In the case of multi condition filter learning,
we assume that a filter will learn common underlying represen-
tation of all types of input noises. The features for ASR are
derived by filtering the log mel spectrogram using filters learnt
from unsupervised models. The features are mean-variance nor-
malized at utterance level before DNN training.

3. Experiments and results
3.1. Noisy Speech Recognition

The WSJ Aurora-4 corpus is used for conducting ASR experi-
ments. This database consists of continuous read speech record-
ings of 5000 words corpus, recorded under clean and noisy
conditions (street, train, car, babble, restaurant, and airport) at
10 − 20 dB SNR. The training data has two sets of 7138 clean
and multi condition recordings (84 speakers). The validation
data has two sets of 1206 recordings for clean and multi con-
dition setup. The test data has 330 recordings (8 speakers) for
each of the 14 clean and noise conditions. The test data is classi-
fied into group A - clean data, B - noisy data, C - clean data with
channel distortion, and D - noisy data with channel distortion.

The speech recognition Kaldi toolkit [25] is used for build-
ing the ASR. A deep belief network- deep neural network
(DBN-DNN) with 4 hidden layers having 21 frames of input
temporal context and a sigmoid nonlinearity is discriminatively
trained using the training data and a tri-gram language model
is used in the ASR decoding. We compare the ASR perfor-
mance of the discussed unsupervised modulation filtering ap-
proaches with traditional mel filter bank energy (MF) features,
power normalized filter bank energy (PN) features [26], ad-
vanced ETSI front-end (ET) [27] and RASTA features (RA) [4].

We trained the ASR in clean condition for each of the learnt
filter R1, R2, R3 individually for all 3 models, and observed
that the filter with bandpass characteristic gives the best per-
formance amongst the three. From the average word error rate
(WER) reported in Table 1, the CRBM and CAE gives the best
performance with R2, while GAN having bandpass characteris-
tic in R1 provides the best performance over the other two.

The ASR performance in clean training condition with the
best filters is reported in Table 2 for each of the 14 test con-
ditions. From the table, it can be observed that PN and ET
features provide better performance compared to the MF and
RAS features. The data driven modulation filtering approach on
mel spectrogram provides significant improvement in noisy and
channel distortion scenarios. The GAN features also gave supe-
rior performance compared to CAE and CRBM features (aver-
age relative improvements of 18 % by GAN - R1 over MF).

In multi condition training scenario, a similar trend was ob-
served for ASR with respect to bandpass characteristic of the
learnt filter. The CRBM and GAN gave the best perfromance
with R2, while CAE having bandpass characteristic in R1 pro-
vides the best performance over the other two. The comparison
of the best filters in multi condition are reported in Table 3. The
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Table 2: Word error rate (%) in Aurora-4 database for clean
training condition with various feature extraction schemes.

Cond MF PN ET RA CRBM CAE GAN
R2 R2 R1

A. Clean with same Mic
Clean 3.4 3.3 3.2 3.5 2.7 3.0 3.2

B: Noisy with same Mic
Airport 21.9 18.3 15.0 19.3 18.0 13.7 13.3
Babble 19.6 16.0 15.5 19.9 17.4 14.0 13.7
Car 8.0 6.2 9.8 7.9 6.6 6.0 6.1
Rest. 24.9 22.9 20.5 23.0 22.4 18.0 17.7
Street 19.5 17.8 19.5 18.7 17.6 15.8 14.9
Train 19.8 16.3 17.4 19.4 18.1 16.8 16.7
Avg. 18.9 16.2 16.3 18.0 16.7 14.0 13.8

C: Clean with diff. Mic
Clean 15.3 11.7 14.5 16.0 13.9 13.1 13.6

D: Noisy with diff. Mic
Airport 40.1 36.4 31.4 39.2 37.1 34.2 32.6
Babble 37.3 34.2 32.1 38.5 35.0 33.4 32.3
Car 24.9 21.5 24.9 24.8 24.1 22.5 21.3
Rest. 39.6 39.0 35.4 39.1 37.7 35.6 34.2
Street 35.7 34.1 35.0 35.8 35.2 34.4 32.1
Train 35.6 31.8 33.2 36.4 35.6 33.7 32.3
Avg. 35.2 32.8 32.0 35.6 34.1 31.6 30.8

Avg. of all conditions
Avg. 24.7 22.1 21.9 24.4 23.0 20.7 20.3

filtered features improves the performance of ASR compared to
the baseline features. Here, the CRBM provide the best perfor-
mance which is found to be moderately better than GAN (aver-
age relative improvements of 9% with CRBM-R2 and 7% with
GAN-R2 over MF).

3.2. Reverberant speech recognition

The ASR experiments on reverberant speech data are performed
using WSJCAM0 corpus in a single channel scenario, released
as a part of REVERB challenge [28]. This database consists
of 7861 recordings from 92 training speakers, 1488 record-
ings from 20 development test (dt) speakers and 2178 record-
ings from two sets of 14 evaluation test (et) speakers, with
each speaker providing about 90 utterances. These recordings
were carried out with two sets of microphone- head mounted as
well as desk microphone positioned about half meter from the
speaker’s head. The database consists of three subsets: training
data set (Train) - for both clean and multi condition training us-
ing simulated reverb data, a simulated test dataset (Sim) and a
naturally reverberant recording of the test dataset (Real). The
rate filters with GAN are learnt from mel spectrogram of Train
dataset - separately for both clean and multi condition. Table
4 shows the ASR performance for clean and multi-condition
training conditions using MF, PN and the selected modulation
filtering GAN-R1 (clean) and GAN-R2 (multi condition).

It can be observed that the selected features perform better
than MF and PN under almost all test conditions with clean and
reverb training data. For the clean training, there is an average
relative improvement of 23 % over MF features on Sim test
data and about 5 % with Real test data. For the multi condition
reverb training, there is improvement under all test conditions
with average relative improvement of 6 % over MF features on
Sim test data and about 3 % for Real test data.

3.3. Semi-supervised training

This section is motivated for the case when only a fraction of
the available training data is labelled. In our case, the semi-
supervised learning is done using the full unsupervised data for
filter learning, while the supervised ASR model is trained with

Table 3: Word error rate (%) in Aurora-4 database for multi
condition training with various feature extraction schemes.

Cond MF PN ET RA CRBM CAE GAN
R2 R1 R2

A. Clean with same Mic
Clean 4.2 4.1 4.5 4.6 3.4 3.8 3.5

B: Noisy with same Mic
Airport 7.5 7.9 8.0 8.1 6.9 7.3 6.7
Babble 7.7 7.9 7.9 8.7 7.0 7.7 7.1
Car 4.7 4.9 5.6 5.0 4.1 4.4 4.1
Rest. 9.8 10.2 11.0 11.0 9.1 9.1 8.6
Street 8.6 8.8 10.0 9.0 8.1 8.7 8.3
Train 8.7 8.3 9.3 9.1 8.1 8.6 8.5
Avg. 7.8 8.0 8.6 8.5 7.2 7.6 7.2

C: Clean with diff. Mic
Clean 8.4 7.8 8.0 9.7 7.1 8.0 7.5

D: Noisy with diff. Mic
Airport 19.7 20.9 18.5 20.1 18.1 19.2 17.9
Babble 20.3 20.9 19.3 20.0 18.0 19.5 19.0
Car 11.8 13.1 14.1 12.5 10.2 11.5 10.7
Rest. 21.7 23.7 21.8 23.1 19.6 21.9 20.5
Street 19.1 20.0 19.4 18.9 17.8 19.5 17.9
Train 18.3 19.6 19.6 19.9 17.1 18.8 18.4
Avg. 18.5 19.7 18.8 19.1 16.8 18.4 17.4

Avg. of all conditions
Avg. 12.1 12.7 12.6 12.8 11.0 12.0 11.3

Table 4: Word error rate (%) in REVERB Challenge database
for clean and multi condition training.

Cond. MF PF GAN MF PF GAN
Clean training Multi training

Sim dt 37.2 36.3 28.9 11.9 11.3 11.4
Sim et 35.8 35.2 27.4 12.2 11.5 11.4
Real dt 70 73.3 67.1 25.9 25.7 24.8
Real et 73.1 77 69.1 30.9 30.7 30.1

Table 5: Word error rate (%) in Aurora-4 database using lesser
amount of labeled training data (70 %, 50 %, 30 %).

Training data 100 % 70 % 50 % 30 %
MF GAN MF GAN MF GAN MF GAN

Clean 24.6 20.3 26.3 20.8 29.3 21.4 33.8 22.9
Multi cond. 12.1 11.3 15.8 13.4 17.6 14.5 21.0 16.4

reduced labeled data (70, 50 and 30 %). The performance com-
parison of ASR with semi-supervised training is shown in Ta-
ble 5 for MF and the selected (GAN-R1 for clean, GAN-R2 for
multi) feature scheme (average WER of all 14 test data condi-
tions). These results indicate that the selected filtered features
are more resilient to reduced amounts of labeled training data
as compared to the baseline system. These features perform
significantly better than MF features (average relative improve-
ment of 32 % in clean training and 22 % in multi condition
training with the use of 30 % labeled data).

4. Summary
This work compares the three unsupervised models for modu-
lation filter learning. The model architectures are designed to
learn and interpret kernel as modulation filter. This work also
develops a filter learning model using generator in an adver-
sarial paradigm. From the ASR results, the bandpass tempo-
ral modulation region proved to be useful for noise robustness,
and the models are able to capture these regions. The proposed
approach also gives considerable improvements in ASR perfor-
mance under reverberant environments. Further, the modula-
tion filtered features using GAN prove to be resilient in semi-
supervised training scenario.
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